#if !defined MORPHOF
#define MORPHOF #include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp> class MorphoFeatures { private: // threshold to produce binary image
int threshold;
// structuring elements used in corner detection
cv::Mat cross;
cv::Mat diamond;
cv::Mat square;
cv::Mat x; void applyThreshold(cv::Mat& result) { // Apply threshold on result
if (threshold>0)
cv::threshold(result, result, threshold, 255, cv::THRESH_BINARY_INV);
} public: MorphoFeatures() : threshold(-1), cross(5,5,CV_8U,cv::Scalar(0)),
diamond(5,5,CV_8U,cv::Scalar(1)),
square(5,5,CV_8U,cv::Scalar(1)),
x(5,5,CV_8U,cv::Scalar(0)){ // Creating the cross-shaped structuring element
for (int i=0; i<5; i++) { cross.at<uchar>(2,i)= 1;
cross.at<uchar>(i,2)= 1;
} // Creating the diamond-shaped structuring element
diamond.at<uchar>(0,0)= 0;
diamond.at<uchar>(0,1)= 0;
diamond.at<uchar>(1,0)= 0;
diamond.at<uchar>(4,4)= 0;
diamond.at<uchar>(3,4)= 0;
diamond.at<uchar>(4,3)= 0;
diamond.at<uchar>(4,0)= 0;
diamond.at<uchar>(4,1)= 0;
diamond.at<uchar>(3,0)= 0;
diamond.at<uchar>(0,4)= 0;
diamond.at<uchar>(0,3)= 0;
diamond.at<uchar>(1,4)= 0; // Creating the x-shaped structuring element
for (int i=0; i<5; i++) { x.at<uchar>(i,i)= 1;
x.at<uchar>(4-i,i)= 1;
}
} void setThreshold(int t) { threshold= t;
} int getThreshold() const { return threshold;
} cv::Mat getEdges(const cv::Mat &image) { // Get the gradient image
cv::Mat result;
cv::morphologyEx(image,result,cv::MORPH_GRADIENT,cv::Mat()); // Apply threshold to obtain a binary image
applyThreshold(result); return result;
} cv::Mat getCorners(const cv::Mat &image) { cv::Mat result; // Dilate with a cross
cv::dilate(image,result,cross); // Erode with a diamond
cv::erode(result,result,diamond); cv::Mat result2;
// Dilate with a X
cv::dilate(image,result2,x); // Erode with a square
cv::erode(result2,result2,square); // Corners are obtained by differencing
// the two closed images
cv::absdiff(result2,result,result); // Apply threshold to obtain a binary image
applyThreshold(result); return result;
} void drawOnImage(const cv::Mat& binary, cv::Mat& image) { cv::Mat_<uchar>::const_iterator it= binary.begin<uchar>();
cv::Mat_<uchar>::const_iterator itend= binary.end<uchar>(); // for each pixel
for (int i=0; it!= itend; ++it,++i) {
if (!*it)
cv::circle(image,cv::Point(i%image.step,i/image.step),5,cv::Scalar(255,0,0));
}
}
}; #endif #include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "morphoFeatures.h" int main()
{
// Read input image
cv::Mat image= cv::imread("d:/test/opencv/building.jpg",0);
if (!image.data)
return 0; // Display the image
cv::namedWindow("Image");
cv::imshow("Image",image); // Create the morphological features instance
MorphoFeatures morpho;
morpho.setThreshold(40); // Get the edges
cv::Mat edges;
edges= morpho.getEdges(image); // Display the edge image
cv::namedWindow("Edge Image");
cv::imshow("Edge Image",edges); // Get the corners
morpho.setThreshold(-1);
cv::Mat corners;
corners= morpho.getCorners(image);
cv::morphologyEx(corners,corners,cv::MORPH_TOPHAT,cv::Mat());
cv::threshold(corners, corners, 40, 255, cv::THRESH_BINARY_INV); // Display the corner image
cv::namedWindow("Corner Image");
cv::imshow("Corner Image",corners); // Display the corner on the image
morpho.drawOnImage(corners,image);
cv::namedWindow("Corners on Image");
cv::imshow("Corners on Image",image); cv::waitKey(); return 0;
}

opencv2使用形态学滤波对图像进行边缘及角点检測的更多相关文章

  1. opencv对图像进行边缘及角点检測

    opencv对图像进行边缘及角点检測 先看结果: 代码: // ConsoleApplication1_812.cpp : Defines the entry point for the consol ...

  2. openCV2马拉松第19圈——Harris角点检測(自己实现)

    计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/26824529 收入囊中 使用OpenCV的con ...

  3. Matlab实现Hough变换检測图像中的直线

    Hough变换的原理: 将图像从图像空间变换至參数空间.变换公式例如以下: 变换以后,图像空间与參数空间存在下面关系: 图像空间中的一点在參数空间是一条曲线,而图像空间共线的各点相应于參数空间交于一点 ...

  4. OpenCV2马拉松第14圈——边缘检測(Sobel,prewitt,roberts)

    收入囊中 差分在边缘检測的角色 Sobel算子 OpenCV sobel函数 OpenCV Scharr函数 prewitt算子 Roberts算子 葵花宝典 差分在边缘检測究竟有什么用呢?先看以下的 ...

  5. 图像边缘检測--OpenCV之cvCanny函数

    图像边缘检測--OpenCV之cvCanny函数 分类: C/C++ void cvCanny( const CvArr* image, CvArr* edges, double threshold1 ...

  6. OpenCV2马拉松第15圈——边缘检測(Laplace算子,LOG算子)

    收入囊中 拉普拉斯算子 LOG算子(高斯拉普拉斯算子) OpenCV Laplacian函数 构建自己的拉普拉斯算子 利用拉普拉斯算子进行图像的锐化 葵花宝典 在OpenCV2马拉松第14圈--边缘检 ...

  7. OpenCV2马拉松第17圈——边缘检測(Canny边缘检測)

    计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g 收入囊中 利用OpenCV Canny函数进行边缘检測 掌握Canny算法基本理论 ...

  8. Python下opencv使用笔记(七)(图像梯度与边缘检測)

    梯度简单来说就是求导,在图像上表现出来的就是提取图像的边缘(无论是横向的.纵向的.斜方向的等等),所须要的无非也是一个核模板.模板的不同结果也不同.所以能够看到,全部的这些个算子函数,归结究竟都能够用 ...

  9. [PCL]点云渐进形态学滤波

    PCL支持点云的形态学滤波,四种操作:侵蚀.膨胀.开(先侵蚀后膨胀).闭(先膨胀后侵蚀) 在#include <pcl/filters/morphological_filter.h>中定义 ...

随机推荐

  1. 如何搭建NTP服务(转)

    最近,在搭建Oracle RAC过程中,需要用到DNS和NTP,其中,DNS用于域名.IP管理,NTP用于时间同步.其实,很久以前搭建过这两种服务,但技术,本质上,符合“用进废退”的客观规律.用得越频 ...

  2. postgresql优化数据的批量插入

    原文:http://www.cnblogs.com/mchina/archive/2012/08/11/2537393.html 有以下几种方法用于优化数据的批量插入. 1. 关闭自动提交:      ...

  3. android新浪分享实例

    新浪分享比较简单,新浪有提供完整的demo. android实现新浪的分享功能,分3种分享情况: 纯文本的,带图片的,图片为本地图片(传入的是图片在手机的地址),第2种带图片的是,网络图片,图片地址为 ...

  4. c++ stl algorithm: std::fill, std::fill_n

    std::fill 在[first, last)范围内填充值 #include <iostream> #include <vector> #include <algori ...

  5. jQuery中的getJSON()

    json文件是一种轻量级的数据交互格式.一般在jQuery中使用getJSON()方法读取. $.getJSON(url,[data],[callback]) url:json文件地址 data:可选 ...

  6. java中浮点数的比较(double, float)(转)

    问题的提出:如果我们编译运行下面这个程序会看到什么? public static void main(String args[]){ System.out.println(0.05+0.01); Sy ...

  7. ubuntu终端方向键不能用(主机名不显示)问题的解决

    sudo gedit /etc/passwd 在/etc/passwd中改动该用户相应的shell:/bin/sh改为/bin/bash就可以解决该问题

  8. Javascript异步数据的同步处理方法

    数据处理方法封装 var DataWatch=(function(){ var gWatch={},cursor= 0,callback_key = 'callback',gMap={}; var c ...

  9. C#之网络

    首先很不好意思,前段时间把评论的功能给关掉啦,BUT NOW 此功能以开放,欢迎小伙伴们拍砖. 1网络 在网络环境下,我们最感兴趣的两个名称空间是System.Net和System.Net.Socke ...

  10. Apache的Mesos和Google的Kubernetes 有什么区别?

    Apache的Mesos和Google的Kubernetes 有什么区别?本文来自StackOverFlow上的一个问题,主要讨论Mesos和Kubernetes的区别,相信我们很多人也有同意的疑问. ...