简介

MySQL 提供了一个 EXPLAIN 命令, 它可以对 SELECT 语句进行分析, 并输出 SELECT 执行的详细信息, 以供开发人员针对性优化.

EXPLAIN 命令用法十分简单, 在 SELECT 语句前加上 Explain 就可以了, 例如:

EXPLAIN SELECT * from user_info WHERE  id < 300;

准备

为了接下来方便演示 EXPLAIN 的使用, 首先我们需要建立两个测试用的表, 并添加相应的数据:

CREATE TABLE `user_info` (
`id` BIGINT(20) NOT NULL AUTO_INCREMENT,
`name` VARCHAR(50) NOT NULL DEFAULT '',
`age` INT(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `name_index` (`name`)
)
ENGINE = InnoDB
DEFAULT CHARSET = utf8 INSERT INTO user_info (name, age) VALUES ('xys', 20);
INSERT INTO user_info (name, age) VALUES ('a', 21);
INSERT INTO user_info (name, age) VALUES ('b', 23);
INSERT INTO user_info (name, age) VALUES ('c', 50);
INSERT INTO user_info (name, age) VALUES ('d', 15);
INSERT INTO user_info (name, age) VALUES ('e', 20);
INSERT INTO user_info (name, age) VALUES ('f', 21);
INSERT INTO user_info (name, age) VALUES ('g', 23);
INSERT INTO user_info (name, age) VALUES ('h', 50);
INSERT INTO user_info (name, age) VALUES ('i', 15);
CREATE TABLE `order_info` (
`id` BIGINT(20) NOT NULL AUTO_INCREMENT,
`user_id` BIGINT(20) DEFAULT NULL,
`product_name` VARCHAR(50) NOT NULL DEFAULT '',
`productor` VARCHAR(30) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
)
ENGINE = InnoDB
DEFAULT CHARSET = utf8 INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p2', 'WL');
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p1', 'DX');
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, 'p5', 'WL');
INSERT INTO order_info (user_id, product_name, productor) VALUES (3, 'p3', 'MA');
INSERT INTO order_info (user_id, product_name, productor) VALUES (4, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (6, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (9, 'p8', 'TE');

EXPLAIN 输出格式

EXPLAIN 命令的输出内容大致如下:

mysql> explain select * from user_info where id = 2\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: const
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: const
rows: 1
filtered: 100.00
Extra: NULL
1 row in set, 1 warning (0.00 sec)

各列的含义如下:

  • id: SELECT 查询的标识符. 每个 SELECT 都会自动分配一个唯一的标识符.
  • select_type: SELECT 查询的类型.
  • table: 查询的是哪个表
  • partitions: 匹配的分区
  • type: join 类型
  • possible_keys: 此次查询中可能选用的索引
  • key: 此次查询中确切使用到的索引.
  • ref: 哪个字段或常数与 key 一起被使用
  • rows: 显示此查询一共扫描了多少行. 这个是一个估计值.
  • filtered: 表示此查询条件所过滤的数据的百分比
  • extra: 额外的信息

接下来我们来重点看一下比较重要的几个字段.

select_type

select_type 表示了查询的类型, 它的常用取值有:

  • SIMPLE, 表示此查询不包含 UNION 查询或子查询
  • PRIMARY, 表示此查询是最外层的查询
  • UNION, 表示此查询是 UNION 的第二或随后的查询
  • DEPENDENT UNION, UNION 中的第二个或后面的查询语句, 取决于外面的查询
  • UNION RESULT, UNION 的结果
  • SUBQUERY, 子查询中的第一个 SELECT
  • DEPENDENT SUBQUERY: 子查询中的第一个 SELECT, 取决于外面的查询. 即子查询依赖于外层查询的结果.

最常见的查询类别应该是 SIMPLE 了, 比如当我们的查询没有子查询, 也没有 UNION 查询时, 那么通常就是 SIMPLE 类型, 例如:

mysql> explain select * from user_info where id = 2\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: const
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: const
rows: 1
filtered: 100.00
Extra: NULL
1 row in set, 1 warning (0.00 sec)

如果我们使用了 UNION 查询, 那么 EXPLAIN 输出 的结果类似如下:

mysql> EXPLAIN (SELECT * FROM user_info  WHERE id IN (1, 2, 3))
-> UNION
-> (SELECT * FROM user_info WHERE id IN (3, 4, 5)) \G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: user_info
partitions: NULL
type: range
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: NULL
rows: 3
filtered: 100.00
Extra: Using where
*************************** 2. row ***************************
id: 2
select_type: UNION
table: user_info
partitions: NULL
type: range
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: NULL
rows: 3
filtered: 100.00
Extra: Using where
*************************** 3. row ***************************
id: NULL
select_type: UNION RESULT
table: <union1,2>
partitions: NULL
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
filtered: NULL
Extra: Using temporary
3 rows in set, 1 warning (0.01 sec)

table

表示查询涉及的表或衍生表

type

type 字段比较重要, 它提供了判断查询是否高效的重要依据依据. 通过 type 字段, 我们判断此次查询是 全表扫描 还是 索引扫描 等.

type 常用类型

type 常用的取值有:

  • system: 表中只有一条数据. 这个类型是特殊的 const 类型.
  • const: 针对主键或唯一索引的等值查询扫描, 最多只返回一行数据. const 查询速度非常快, 因为它仅仅读取一次即可.

    例如下面的这个查询, 它使用了主键索引, 因此 type 就是 const 类型的.
mysql> explain select * from user_info where id = 2\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: const
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: const
rows: 1
filtered: 100.00
Extra: NULL
1 row in set, 1 warning (0.00 sec)
  • eq_ref: 此类型通常出现在多表的 join 查询, 表示对于前表的每一个结果, 都只能匹配到后表的一行结果. 并且查询的比较操作通常是 =, 查询效率较高. 例如:
mysql> EXPLAIN SELECT * FROM user_info, order_info WHERE user_info.id = order_info.user_id\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: order_info
partitions: NULL
type: index
possible_keys: user_product_detail_index
key: user_product_detail_index
key_len: 314
ref: NULL
rows: 9
filtered: 100.00
Extra: Using where; Using index
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: eq_ref
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: test.order_info.user_id
rows: 1
filtered: 100.00
Extra: NULL
2 rows in set, 1 warning (0.00 sec)
  • ref: 此类型通常出现在多表的 join 查询, 针对于非唯一或非主键索引, 或者是使用了 最左前缀 规则索引的查询.

    例如下面这个例子中, 就使用到了 ref 类型的查询:
mysql> EXPLAIN SELECT * FROM user_info, order_info WHERE user_info.id = order_info.user_id AND order_info.user_id = 5\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: const
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: const
rows: 1
filtered: 100.00
Extra: NULL
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: order_info
partitions: NULL
type: ref
possible_keys: user_product_detail_index
key: user_product_detail_index
key_len: 9
ref: const
rows: 1
filtered: 100.00
Extra: Using index
2 rows in set, 1 warning (0.01 sec)
  • range: 表示使用索引范围查询, 通过索引字段范围获取表中部分数据记录. 这个类型通常出现在 =, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN, IN() 操作中.

    typerange 时, 那么 EXPLAIN 输出的 ref 字段为 NULL, 并且 key_len 字段是此次查询中使用到的索引的最长的那个.

    例如下面的例子就是一个范围查询:
mysql> EXPLAIN SELECT *
-> FROM user_info
-> WHERE id BETWEEN 2 AND 8 \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: range
possible_keys: PRIMARY
key: PRIMARY
key_len: 8
ref: NULL
rows: 7
filtered: 100.00
Extra: Using where
1 row in set, 1 warning (0.00 sec)
  • index: 表示全索引扫描(full index scan), 和 ALL 类型类似, 只不过 ALL 类型是全表扫描, 而 index 类型则仅仅扫描所有的索引, 而不扫描数据.

    index 类型通常出现在: 所要查询的数据直接在索引树中就可以获取到, 而不需要扫描数据. 当是这种情况时, Extra 字段 会显示 Using index.

例如:

mysql> EXPLAIN SELECT name FROM  user_info \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: index
possible_keys: NULL
key: name_index
key_len: 152
ref: NULL
rows: 10
filtered: 100.00
Extra: Using index
1 row in set, 1 warning (0.00 sec)

上面的例子中, 我们查询的 name 字段恰好是一个索引, 因此我们直接从索引中获取数据就可以满足查询的需求了, 而不需要查询表中的数据. 因此这样的情况下, type 的值是 index, 并且 Extra 的值是 Using index.

  • ALL: 表示全表扫描, 这个类型的查询是性能最差的查询之一. 通常来说, 我们的查询不应该出现 ALL 类型的查询, 因为这样的查询在数据量大的情况下, 对数据库的性能是巨大的灾难. 如一个查询是 ALL 类型查询, 那么一般来说可以对相应的字段添加索引来避免.

    下面是一个全表扫描的例子, 可以看到, 在全表扫描时, possible_keys 和 key 字段都是 NULL, 表示没有使用到索引, 并且 rows 十分巨大, 因此整个查询效率是十分低下的.
mysql> EXPLAIN SELECT age FROM  user_info WHERE age = 20 \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user_info
partitions: NULL
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 10
filtered: 10.00
Extra: Using where
1 row in set, 1 warning (0.00 sec)

type 类型的性能比较

通常来说, 不同的 type 类型的性能关系如下:

ALL < index < range ~ index_merge < ref < eq_ref < const < system

ALL 类型因为是全表扫描, 因此在相同的查询条件下, 它是速度最慢的.

index 类型的查询虽然不是全表扫描, 但是它扫描了所有的索引, 因此比 ALL 类型的稍快.

后面的几种类型都是利用了索引来查询数据, 因此可以过滤部分或大部分数据, 因此查询效率就比较高了.

possible_keys

possible_keys 表示 MySQL 在查询时, 能够使用到的索引. 注意, 即使有些索引在 possible_keys 中出现, 但是并不表示此索引会真正地被 MySQL 使用到. MySQL 在查询时具体使用了哪些索引, 由 key 字段决定.

key

此字段是 MySQL 在当前查询时所真正使用到的索引.

key_len

表示查询优化器使用了索引的字节数. 这个字段可以评估组合索引是否完全被使用, 或只有最左部分字段被使用到.

key_len 的计算规则如下:

  • 字符串
  • char(n): n 字节长度
  • varchar(n): 如果是 utf8 编码, 则是 3 * n + 2字节; 如果是 utf8mb4 编码, 则是 4 * n + 2 字节.
  • 数值类型:
  • TINYINT: 1字节
  • SMALLINT: 2字节
  • MEDIUMINT: 3字节
  • INT: 4字节
  • BIGINT: 8字节
  • 时间类型
  • DATE: 3字节
  • TIMESTAMP: 4字节
  • DATETIME: 8字节
  • 字段属性: NULL 属性 占用一个字节. 如果一个字段是 NOT NULL 的, 则没有此属性.

我们来举两个简单的栗子:

mysql> EXPLAIN SELECT * FROM order_info WHERE user_id < 3 AND product_name = 'p1' AND productor = 'WHH' \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: order_info
partitions: NULL
type: range
possible_keys: user_product_detail_index
key: user_product_detail_index
key_len: 9
ref: NULL
rows: 5
filtered: 11.11
Extra: Using where; Using index
1 row in set, 1 warning (0.00 sec)

上面的例子是从表 order_info 中查询指定的内容, 而我们从此表的建表语句中可以知道, 表 order_info 有一个联合索引:

KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)

不过此查询语句 WHERE user_id < 3 AND product_name = 'p1' AND productor = 'WHH' 中, 因为先进行 user_id 的范围查询, 而根据 最左前缀匹配 原则, 当遇到范围查询时, 就停止索引的匹配, 因此实际上我们使用到的索引的字段只有 user_id, 因此在 EXPLAIN 中, 显示的 key_len 为 9. 因为 user_id 字段是 BIGINT, 占用 8 字节, 而 NULL 属性占用一个字节, 因此总共是 9 个字节. 若我们将user_id 字段改为 BIGINT(20) NOT NULL DEFAULT '0', 则 key_length 应该是8.

上面因为 最左前缀匹配 原则, 我们的查询仅仅使用到了联合索引的 user_id 字段, 因此效率不算高.

接下来我们来看一下下一个例子:

mysql> EXPLAIN SELECT * FROM order_info WHERE user_id = 1 AND product_name = 'p1' \G;
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: order_info
partitions: NULL
type: ref
possible_keys: user_product_detail_index
key: user_product_detail_index
key_len: 161
ref: const,const
rows: 2
filtered: 100.00
Extra: Using index
1 row in set, 1 warning (0.00 sec)

这次的查询中, 我们没有使用到范围查询, key_len 的值为 161. 为什么呢? 因为我们的查询条件 WHERE user_id = 1 AND product_name = 'p1' 中, 仅仅使用到了联合索引中的前两个字段, 因此 keyLen(user_id) + keyLen(product_name) = 9 + 50 * 3 + 2 = 161

rows

rows 也是一个重要的字段. MySQL 查询优化器根据统计信息, 估算 SQL 要查找到结果集需要扫描读取的数据行数.

这个值非常直观显示 SQL 的效率好坏, 原则上 rows 越少越好.

Extra

EXplain 中的很多额外的信息会在 Extra 字段显示, 常见的有以下几种内容:

  • Using filesort

    当 Extra 中有 Using filesort 时, 表示 MySQL 需额外的排序操作, 不能通过索引顺序达到排序效果. 一般有 Using filesort, 都建议优化去掉, 因为这样的查询 CPU 资源消耗大.

    例如下面的例子:
mysql> EXPLAIN SELECT * FROM order_info ORDER BY product_name \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: order_info
partitions: NULL
type: index
possible_keys: NULL
key: user_product_detail_index
key_len: 253
ref: NULL
rows: 9
filtered: 100.00
Extra: Using index; Using filesort
1 row in set, 1 warning (0.00 sec)

我们的索引是

KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)

但是上面的查询中根据 product_name 来排序, 因此不能使用索引进行优化, 进而会产生 Using filesort.

如果我们将排序依据改为 ORDER BY user_id, product_name, 那么就不会出现 Using filesort 了. 例如:

mysql> EXPLAIN SELECT * FROM order_info ORDER BY user_id, product_name \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: order_info
partitions: NULL
type: index
possible_keys: NULL
key: user_product_detail_index
key_len: 253
ref: NULL
rows: 9
filtered: 100.00
Extra: Using index
1 row in set, 1 warning (0.00 sec)
  • Using index

    "覆盖索引扫描", 表示查询在索引树中就可查找所需数据, 不用扫描表数据文件, 往往说明性能不错
  • Using temporary

    查询有使用临时表, 一般出现于排序, 分组和多表 join 的情况, 查询效率不高, 建议优化.

MySQL 性能优化神器 Explain 使用分析的更多相关文章

  1. MySQL性能优化神器Explain

    本文涉及:MySQL性能优化神器Explain的使用 简介 虽然使用Explain不能够马上调优我们的SQL,它也不能给予我们一些调整建议,但是它能够让我们了解MySQL 优化器是如何执行SQL 语句 ...

  2. MySQL性能优化神器—explain

    一.explain是什么? 简单来讲就是官方给的一个优化工具,直接在你的SQL语句前加上explain,执行整条语句,之后你就可以根据执行结果优化你的SQL啦,废话不多说,直接刚实例 测试实例 1.创 ...

  3. python mysql索引 优化神器explain 慢查询

    ##############总结########## 数据库中专门帮助用户快速找到数据的一种数据结构 类似于字典的目录的索引 索引的作用:约束和加速查找 工作原理: b+树形结构 最上层是树根,中间是 ...

  4. MySql 性能优化之 Explain

    MySQL 之 Explain 输出分析 背景 前面的文章写过 MySQL 的事务和锁,这篇文章我们来聊聊 MySQL 的 Explain,估计大家在工作或者面试中多多少少都会接触过这个.可能工作中实 ...

  5. Mysql系列-性能优化神器EXPLAIN使用介绍及分析

    MySQL 提供了一个 EXPLAIN 命令, 它可以对 SELECT 语句进行分析, 并输出 SELECT 执行的详细信息, 以供开发人员针对性优化. EXPLAIN 命令用法十分简单, 在 SEL ...

  6. mysql性能优化-慢查询分析、优化索引和配置 (慢查询日志,explain,profile)

    mysql性能优化-慢查询分析.优化索引和配置 (慢查询日志,explain,profile) 一.优化概述 二.查询与索引优化分析 1性能瓶颈定位 Show命令 慢查询日志 explain分析查询 ...

  7. Mysql - 性能优化之子查询

    记得在做项目的时候, 听到过一句话, 尽量不要使用子查询, 那么这一篇就来看一下, 这句话是否是正确的. 那在这之前, 需要介绍一些概念性东西和mysql对语句的大致处理. 当Mysql Server ...

  8. MySQL性能优化总结

    一.MySQL的主要适用场景 1.Web网站系统 2.日志记录系统 3.数据仓库系统 4.嵌入式系统 二.MySQL架构图: 三.MySQL存储引擎概述 1)MyISAM存储引擎 MyISAM存储引擎 ...

  9. MYSQL性能优化的最佳20+条经验

    MYSQL性能优化的最佳20+条经验 2009年11月27日 陈皓 评论 148 条评论  131,702 人阅读 今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数 ...

随机推荐

  1. Django小例子 – 模型数据的模板呈现

    学习Django的这几天,学习过程还是很愉快的,django采用的MVC架构,学习曲线十分平缓,在深入学习之前,先简单的整理记录下django从数据库中获取数据并在模板中使用的方法.温故而知新 ^_^ ...

  2. [Android] Volley源代码分析(五岁以下儿童)Q \\ u0026一个

    Volley源代码分析系列那里一段时间,告诉我,有许多私人留言,同时一些问题抛出.对于一些简单的问题,我们跳,这两天被连接到朋友@smali提出的问题.告诉我你不得不赞叹查看源代码时的详细程度,大家一 ...

  3. MyEclipse新建Web Project报错

    1.详细报错例如以下图 2.报错原因 3.解决方法

  4. java 学习List 的 add 与set差分法

    /** * 在List收集在许多方面.add(int index,Object obj)方法与set(int index,Object e)方法不易区分 * .通过以下实例.能够看出两个方法中的差别 ...

  5. jquery实现文字上下滚动效果

    文字上下滚动是经常用到的js效果,这里介绍一种上下渐隐渐出的文字展现效果! 代码实现很简单,只需要引入jquery就可以. 代码如下: <!DOCTYPE> <head> &l ...

  6. Mysql彻底卸载

    -----本文摘自:http://www.heiqu.com/show-64764-1.html 1.控制面板里的增加删除程序内进行删除 2.删除MySQL文件夹下的my.ini文件,如果备份好,可以 ...

  7. ASP.NET MVC中Area的另一种用法

    ASP.NET MVC中Area的另一种用法 [摘要]本文只是为一行代码而分享 context.MapRoute("API", "api/{controller}/{ac ...

  8. readonly和const的区别

    readonly与const的区别1.const常量在声明的同时必须赋值,readonly在声明时可以不赋值2.readonly只能在声明时或在构造方法中赋值(readonly的成员变量可以根据调用不 ...

  9. 应用CSS的page-break-after属性 实现WEB页面强制分页打印

    虽然dedecms.com向大家介绍了很多CSS属性的相关知识,但有些非常冷门的属性还是有所欠缺.在B/S程序中,对打印页面的控制,CSS相对比较弱,例如: 自动分页, 就基本没啥实际用途.我们通常需 ...

  10. 利用自定义的AuthenticationFilter实现Basic认证

    [ASP.NET MVC] 利用自定义的AuthenticationFilter实现Basic认证   很多情况下目标Action方法都要求在一个安全上下文中被执行,这里所谓的安全上下文主要指的是当前 ...