Problem Description
Recently, Doge got a funny birthday present from his new friend, Protein Tiger from St. Beeze College. No, not cactuses. It's a mysterious blackbox.



After some research, Doge found that the box is maintaining a sequence an of n numbers internally, initially all numbers are zero, and there are THREE "operations":



1.Add d to the k-th number of the sequence.

2.Query the sum of ai where l ≤ i ≤ r.

3.Change ai to the nearest Fibonacci number, where l ≤ i ≤ r.

4.Play sound "Chee-rio!", a bit useless.



Let F0 = 1,F1 = 1,Fibonacci number Fn is defined as Fn = Fn - 1 + Fn - 2 for n ≥ 2.



Nearest Fibonacci number of number x means the smallest Fn where |Fn - x| is also smallest.



Doge doesn't believe the machine could respond each request in less than 10ms. Help Doge figure out the reason.
 
Input
Input contains several test cases, please process till EOF.

For each test case, there will be one line containing two integers n, m.

Next m lines, each line indicates a query:



1 k d - "add"

2 l r - "query sum"

3 l r - "change to nearest Fibonacci"



1 ≤ n ≤ 100000, 1 ≤ m ≤ 100000, |d| < 231, all queries will be valid.
 
Output
For each Type 2 ("query sum") operation, output one line containing an integer represent the answer of this query.
 
Sample Input
1 1
2 1 1
5 4
1 1 7
1 3 17
3 2 4
2 1 5
 
Sample Output
0
22
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define ll __int64
#define maxn 100005
#define ls l,mid,2*i
#define rs mid+1,r,2*i+1
#define lson 2*i
#define rson 2*i+1
struct node
{
int l,r;
ll e,f;//e为该区间的和,f为其近期的斐波那契数
int flag,len;//flag,标记这个区间内是否斐波那契数,len为长度
} a[maxn<<2];
int n,m;
ll f[90] = {1,1}; ll pabs(ll a)
{
return a<0?-a:a;
} void PushDown(int i,int m)
{
if(a[i].flag)
{
a[lson].flag = a[rson].flag = a[i].flag;
a[lson].len = a[i].flag*(m-m>>1);
a[rson].len = a[i].flag*(m>>1);
a[lson].e = a[lson].f;
a[rson].e = a[rson].f;
a[i].flag = 0;
}
} void PushUp(int i)
{
a[i].e = a[lson].e+a[rson].e;
a[i].f = a[lson].f+a[rson].f;
} void init(int l,int r,int i)
{
a[i].flag = a[i].len = 0;
a[i].l = l;
a[i].r = r;
a[i].e = 0;
if(l == r)
{
a[i].f = 1;
return;
}
int mid = (l+r)>>1;
init(ls);
init(rs);
PushUp(i);
} void add(int pos,int m,int l,int r,int i)
{
if(pos<l || pos>r) return ;
if(l == r)
{
if(a[i].flag)
{
a[i].e = m+a[i].f;
a[i].flag = 0;
a[i].len = 0;
}
else a[i].e+=m;
int p = lower_bound(f,f+80,a[i].e)-f;
if(!p)
a[i].f = 1;
else if(pabs(a[i].e-f[p])<pabs(a[i].e-f[p-1]))
a[i].f = f[p];
else
a[i].f = f[p-1];
return ;
}
PushDown(i,r-l+1);
int mid = (l+r)>>1;
if(pos<=mid) add(pos,m,ls);
else add(pos,m,rs);
PushUp(i);
} ll query(int L,int R,int l,int r,int i)
{
if(R<l || L>r) return 0;
else if(L<=l && R>=r) return a[i].e;
PushDown(i,r-l+1);
ll ans = 0;
int mid = (l+r)>>1;
if(L<=mid)
ans += query(L,R,ls);
if(R>mid)
ans += query(L,R,rs);
return ans;
} void change(int L,int R,int l,int r,int i)
{
if(R<l || L>r) return ;
if(L<=l && R>=r)
{
a[i].e = a[i].f;
a[i].flag = 1;
a[i].len = r-l+1;
return ;
}
PushDown(i,r-l+1);
int mid = (l+r)>>1;
if(L<=mid)
change(L,R,ls);
if(R>mid)
change(L,R,rs);
PushUp(i);
} int main()
{
int i,j,x,k,d,l,r;
for(i = 2; i<80; i++)
f[i] = f[i-1]+f[i-2];
while(~scanf("%d%d",&n,&m))
{
init(1,n,1);
while(m--)
{
scanf("%d",&x);
if(x == 1)
{
scanf("%d%d",&k,&d);
add(k,d,1,n,1);
}
else
{
scanf("%d%d",&l,&r);
if(x == 2)
printf("%I64d\n",query(l,r,1,n,1));
else
change(l,r,1,n,1);
}
}
} return 0;
}


HDU4893:Wow! Such Sequence!(段树lazy)的更多相关文章

  1. 2014多校3 Wow! Such Sequence!段树

    主题链接:http://acm.hdu.edu.cn/showproblem.php? pid=4893 这个问题还真是纠结啊--好久不写线段树的题了.由于这几天学伸展树.然后认为线段树小case了. ...

  2. Wow! Such Sequence!(线段树4893)

    Wow! Such Sequence! Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...

  3. hdu 4893 Wow! Such Sequence!(线段树)

    题目链接:hdu 4983 Wow! Such Sequence! 题目大意:就是三种操作 1 k d, 改动k的为值添加d 2 l r, 查询l到r的区间和 3 l r. 间l到r区间上的所以数变成 ...

  4. hdu4893 Wow! Such Sequence!

    线段树结点上保存一个一般的sum值,再同一时候保存一个fbsum,表示这个结点表示的一段数字若为斐波那契数时的和 当进行3操作时,仅仅用将sum = fbsum就可以 其它操作照常进行,仅仅是单点更新 ...

  5. 线段树 + 区间更新: HDU 4893 Wow! Such Sequence!

    Wow! Such Sequence! Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  6. HDU 4893 Wow! Such Sequence! (线段树)

    Wow! Such Sequence! 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4893 Description Recently, Doge ...

  7. HDU 1394 Minimum Inversion Number (数据结构-段树)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  8. PKU A Simple Problem with Integers (段树更新间隔总和)

    意甲冠军:一个典型的段树C,Q问题,有n的数量a[i] (1~n),C, a, b,c在[a,b]加c Q a b 求[a,b]的和. #include<cstdio> #include& ...

  9. HDU 6356.Glad You Came-线段树(区间更新+剪枝) (2018 Multi-University Training Contest 5 1007)

    6356.Glad You Came 题意就是给你一个随机生成函数,然后从随机函数里确定查询的左右区间以及要更新的val值.然后最后求一下异或和就可以了. 线段树,区间最大值和最小值维护一下,因为数据 ...

随机推荐

  1. Red Gate系列之八 SQL Connect 1.1.1.19 Edition 数据库连接及操作工具 完全破解+使用教程

    原文:Red Gate系列之八 SQL Connect 1.1.1.19 Edition 数据库连接及操作工具 完全破解+使用教程 Red Gate系列之八 SQL Connect 1.1.1.19 ...

  2. IntelliJ IDEA常见问题解决办法汇总

    (1)SVN相关的操作: 启用:方法1:VCS菜单下Enable Version Control Integration,点击之后选择相应的版本控制工具方法2:Setting中Version Cont ...

  3. Java Swing TextArea 滚动条和获得焦点

    JTextArea text=new JTextArea(); text.setLineWrap(true);//设置自己主动换行,之后则不须要设置水平滚动栏 JScrollPane scroll=n ...

  4. effective c++ 条款23 perfer nonmember nonfreind function to member function

    主要的理由还是封装.nonmember nonfreind function 不能访问类private 成员变量. 这个场景是有一个类提供了一些基本功能,比如 class WebBrowser { p ...

  5. repeater操作

    protected void rpRole_ItemDataBound(object sender, RepeaterItemEventArgs e) { if (e.Item.ItemType == ...

  6. Linux下一个OTL 采用long long类型数据库支持BIGINT

    码如下面: #define OTL_BIGINT long long #define OTL_STR_TO_BIGINT(str,n) \ { \ n=atoll(str); \ } #define ...

  7. 智能家居DIY

    近期智能家居比較火,将房子简单改造下,也算体验智能家居. 本文解说的是用无线的方式,长处是:不用改造现有线路,直接安装模块就可以实现想要的功能,花的钱也较少,共六百左右 =============== ...

  8. 在Windows基础上(硬盘)安装Linux操作系统(CentOS/RedHat)

    注:该方法安装CentOS ,RedHat均没有问题,其它Linux操作系统,没有尝试过. 0.创建一个fat32的盘.我分了8G给这个盘,盘符为F.F盘以后的内存所有删除,作为未分配的内存.这个留用 ...

  9. V微软S2015下载:开展Win10/Linux/iOS多平台软件

    微软VS2015下载:开展Win10/Linux/iOS多平台软件 资源:IT之家作者:子非         责任编辑:子非   11月13日消息,微软刚刚宣布了 Visual Studio 2015 ...

  10. 新手学Unity3d的一些网站及相应学习路线

    一.unity3d有什么优势 如果您对开发游戏感兴趣,而又没有决定选择哪一个游戏引擎,别犹豫了 unity3d是一个很好的选择! 就我来看unity3d优势主要有以下几方面:首先部署简单,自带了一个I ...