监督学习

就是人们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优则表示在某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力。

举个简单的例子,小时候老师教我们看图识物,图片是输入,老师的判断是输出,我们通过跟读、写来训练自己,久而久之大脑中会形成一些泛化得模型,以后遇到实物时不需要老师的提醒就可以知道这是什么类型的。

比较经典的监督学习算法包括:KNN,SVM等

无监督学习

无监督类型是另一种比较常用的学习方法,和监督学习相比没有训练样本。直接进行数据建模,比如,我们参观画展,刚开始并没有分类的概念,看多了,我们就会将不同的画分为不同的派别。

无监督学习经典的算法:聚类算法

使用场景

那么,什么时候应该采用监督学习,什么时候应该采用非监督学习呢?一种非常简单的回答就是从定义入手,如果我们在分类的过程中有训练样本(training data),则可以考虑用监督学习的方法;如果没有训练样本,则不可能用监督学习的方法。但是事实上,我们在针对一个现实问题进行解答的过程中,即使我们没有现成的训练样本,我们也能够凭借自己的双眼,从待分类的数据中人工标注一些样本,并把他们作为训练样本,这样的话就可以把条件改善,用监督学习的方法来做。当然不得不说的是有时候数据表达的会非常隐蔽,也就是说我们手头的信息不是抽象的形式,而是具体的一大堆数字,这样我们很难凭借人本身对它们简单地进行分类。这个说的好像有点不大明白,举个例子说就是在bag-of-words模型的时候,我们利用k-means的方法聚类从而对数据投影,这时候用k-means就是因为我们当前到手的只有一大堆数据,而且是很高维的,当我们想把他们分为50个类的时候,我们已经无力将每个数据标记说这个数应该是哪个类,那个数又应该是哪个类了。所以说遇到这种情况也只有无监督学习能够帮助我们了。

那么这么说来,能不能再深入地问下去,如果有训练样本(或者说如果我们可以获得到一些训练数据的话),监督学习就会比无监督学习更合适呢?(照我们单纯地想,有高人教总比自己领悟来的准,来的快吧!)我觉得一般来说,是这样的,但是这要具体看看训练数据的获取。本人在最近课题的研究中,手动标注了大量的训练样本(当然这些样本基本准确了),而且把样本画在特征空间中发现线性可分性非常好,只是在分类面附近总有一些混淆的数据样本,从而用线性分类器进行分类之后这样样本会被误判。然而,如果用混合高斯模型(GMM)来分的话,这些易混淆的点被正确分类的更多了。对这个现象的一个解释,就是不管是训练样本,还是待聚类的数据,并不是所有数据都是相互独立同分布的。换句话说,数据与数据的分布之间存在联系。在我阅读监督学习的大量材料中,大家都没有对训练数据的这一假设(独立同分布)进行说明,直到我阅读到一本书的提示后才恍然大悟。对于不同的场景,正负样本的分布如果会存在偏移(可能是大的偏移,也可能偏移比较小),这样的话用监督学习的效果可能就不如用非监督学习了

监督学习 VS 无监督学习的更多相关文章

  1. machine learning----->有监督学习和无监督学习的区别

    1.有监督学习和无监督学习的区别: 1.1概述: 有监督学习是知道变量值(数据集)和结果(已知结果/函数值),但是不知道函数样式(函数表达式)的情况下通过machine learning(ML)获得正 ...

  2. Coursera机器学习笔记(一) - 监督学习vs无监督学习

    转载 http://daniellaah.github.io/2016/Machine-Learning-Andrew-Ng-My-Notes-Week-1-Introduction.html 一. ...

  3. Pytorch_第五篇_深度学习 (DeepLearning) 基础 [1]---监督学习与无监督学习

    深度学习 (DeepLearning) 基础 [1]---监督学习与无监督学习 Introduce 学习了Pytorch基础之后,在利用Pytorch搭建各种神经网络模型解决问题之前,我们需要了解深度 ...

  4. 【ML入门系列】(三)监督学习和无监督学习

    概述 在机器学习领域,主要有三类不同的学习方法: 监督学习(Supervised learning) 非监督学习(Unsupervised learning) 半监督学习(Semi-supervise ...

  5. 监督学习,无监督学习常用算法集合总结,引用scikit-learn库(监督篇)

    why写这篇blog 最近在接触这方面的知识,但是找了许多的笔记,都感觉没有很好的总结出来,也正好当做是边学习,边复习着走.大佬轻喷.参考书目<python机器学习基础教程> 将分别从以下 ...

  6. 【机器学习】从分类问题区别机器学习类型 与 初步介绍无监督学习算法 PAC

    如果要对硬币进行分类,我们对硬币根据不同的尺寸重量来告诉机器它是多少面值的硬币 这种对应的机器学习即使监督学习,那么如果我们不告诉机器这是多少面额的硬币,只有尺寸和重量,这时候让机器进行分类,希望机器 ...

  7. Python机器学习入门(1)之导学+无监督学习

    Python Scikit-learn *一组简单有效的工具集 *依赖Python的NumPy,SciPy和matplotlib库 *开源 可复用 sklearn库的安装 DOS窗口中输入 pip i ...

  8. 【机器学习基础】无监督学习(1)——PCA

    前面对半监督学习部分作了简单的介绍,这里开始了解有关无监督学习的部分,无监督学习内容稍微较多,本节主要介绍无监督学习中的PCA降维的基本原理和实现. PCA 0.无监督学习简介 相较于有监督学习和半监 ...

  9. AI之强化学习、无监督学习、半监督学习和对抗学习

    1.强化学习 @ 目录 1.强化学习 1.1 强化学习原理 1.2 强化学习与监督学习 2.无监督学习 3.半监督学习 4.对抗学习 强化学习(英语:Reinforcement Learning,简称 ...

随机推荐

  1. 一个免费的、跨平台的、开源音频编辑器Audacity

    Audacity 是一个免费的开源程序,用于编辑音频录制.它可在多个平台(windows/linux)上运行.Audacity 基于 GUI,是一个具有多种选项的强大程序.它支持您录制各种类型的声音. ...

  2. 网站定位之---根据IP获得区域

    记得以前做一个培训机构网站时候需要定位,那时候用的搜狐的api,不是很精准. demo:https://github.com/dunitian/LoTCodeBase/tree/master/NetC ...

  3. HTML 事件(四) 模拟事件操作

    本篇主要介绍HTML DOM中事件的模拟操作. 其他事件文章 1. HTML 事件(一) 事件的介绍 2. HTML 事件(二) 事件的注册与注销 3. HTML 事件(三) 事件流与事件委托 4.  ...

  4. AbpZero--2.如何启动

    1.直接启动 VS中直接启动 2.IIS站点 IIS中配置一个站点来启动(推荐) 3.登录 系统默认创建2个用户 默认用户名:admin 密码:123qwe 租户:Default  默认用户名:adm ...

  5. 缓存工具类CacheHelper

    代码: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Syst ...

  6. 【夯实PHP基础】nginx php-fpm 输出php错误日志

    本文地址 原文地址 分享提纲: 1.概述 2.解决办法(解决nginx下php-fpm不记录php错误日志) 1. 概述 nginx是一个web服务器,因此nginx的access日志只有对访问页面的 ...

  7. Linux学习笔记(一):常用命令

    经过统计Linux中能够识别的命令超过3000种,当然常用的命令就远远没有这么多了,按照我的习惯,我把已经学过的Linux常用命令做了以下几个方面的分割: 1.文件处理命令 2.文件搜索命令 3.帮助 ...

  8. bootstrap

    访问Bootstrap中文网,下载bootstrap中文文档,选择用于生产环境的bootstrap. 在官网使用ctrl+f查找想要的内容. 这里记一下Visual Studio Code软件的用法: ...

  9. smartcrop.js智能图片裁剪库

    今天将为大家介绍一款近期github上很不错的开源库 – smartcrop.js.它是一款图片处理的智能裁剪库.在很多项目开发中,经常会遇见上传图片的场景,它可能是用户照片信息,也可能是商品图片等. ...

  10. ABP(现代ASP.NET样板开发框架)系列之9、ABP设置管理

    点这里进入ABP系列文章总目录 基于DDD的现代ASP.NET开发框架--ABP系列之9.ABP设置管理 ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目)” ...