from: https://controls.engin.umich.edu/wiki/index.php/Basic_statistics:_mean,_median,_average,_standard_deviation,_z-scores,_and_p-value#Mean_and_Weighted_Average

In the mind of a statistician, the world consists of populations and samples. An example of a population is all 7th graders in the United States. A related example of a sample would be a group of 7th graders in the United States. In this particular example, a federal health care administrator would like to know the average weight of 7th graders and how that compares to other countries. Unfortunately, it is too expensive to measure the weight of every 7th grader in the United States. Instead statistical methodologies can be used to estimate the average weight of 7th graders in the United States by measure the weights of a sample (or multiple samples) of 7th graders.

Parameters are to populations as statistics are to samples.

A parameter is a property of a population. As illustrated in the example above, most of the time it is infeasible to directly measure a population parameter. Instead a sample must be taken and statistic for the sample is calculated. This statistic can be used to estimate the population parameter. (A branch of statistics know as Inferential Statistics involves using samples to infer information about a populations.) In the example about the population parameter is the average weight of all 7th graders in the United States and the sample statistic is the average weight of a group of 7th graders.

A large number of statistical inference techniques require samples to be a single random sample and independently gathers. In short, this allows statistics to be treated as random variables. A in-depth discussion of these consequences is beyond the scope of this text. It is also important to note that statistics can be flawed due to large variance, bias, inconsistency and other errors that may arise during sampling. Whenever performing over reviewing statistical analysis, a skeptical eye is always valuable.

Statistics take on many forms. Examples of statistics can be seen below.

Now that we've discussed some different ways in which you can describe a data set, you might be wondering when to use each way. Well, if all the data points are relatively close together, the average gives you a good idea as to what the points are closest to. If on the other hand, almost all the points fall close to one, or a group of close values, but occassionally a value that differs greatly can be seen, then the mode might be more accurate for describing this system, whereas the mean would incorporate the occassional outlying data. The median is useful if you are interested in the range of values your system could be operating in. Half the values should be above and half the values should be below, so you have an idea of where the middle operating point is.

What is a Statistic?的更多相关文章

  1. AngularJS in Action读书笔记4(实战篇)——创建Statistic模块

    个人感觉<Angularjs in action>这本书写的很好,很流畅,循序渐进,深入浅出,关键是结合了一个托管于Github上的实例讲解的,有代码可查,对于初学者应该是个不错的途径.( ...

  2. SPOJ ORDERSET - Order statistic set

    ORDERSET - Order statistic set   In this problem, you have to maintain a dynamic set of numbers whic ...

  3. codeforces 675E E. Trains and Statistic(线段树+dp)

    题目链接: E. Trains and Statistic time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  4. 【Android Studio安装部署系列】四十、Android Studio安装Statistic插件(统计项目总行数)

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 概述 Android Studio 是没有提提供统计代码全部行数的功能的,但是对于开发者来说,这个功能确实必备的,Statistic统计代 ...

  5. [DUBBO] Unexpected error occur at send statistic, cause: Forbid consumer 192.168.3.151 access servic

    [DUBBO] Unexpected error occur at send statistic, cause: Forbid consumer 192.168.3.151 access servic ...

  6. Oracle Statistic 统计信息 小结

    oraclestatisticstabledatabasesqldictionary   目录(?)[-] 直方图上列的信息说明 直方图类型说明   一.  Statistic 说明 Oracle 官 ...

  7. Chi-Square Statistic/Distribution

    . 1.What is a Chi Square Test? 卡方检验有两种类型.两者使用卡方统计量和分布的目的不同. 第一种:卡方拟合优度检验确定样本数据是否与总体匹配.(这里不介绍) 第二种:独立 ...

  8. Codeforces Round #353 (Div. 2) E. Trains and Statistic dp 贪心

    E. Trains and Statistic 题目连接: http://www.codeforces.com/contest/675/problem/E Description Vasya comm ...

  9. auto create statistic script

    --生成用户创建的statistic脚本 select object_name(stout.object_id), stout.name, 'CREATE STATISTICS '+ stout.na ...

随机推荐

  1. 基本套接字编程(4) -- poll篇

    1. poll技术 poll函数起源于SVR3,最初局限于流设备.SVR4取消了这种限制,允许poll工作在任何描述符上.poll提供的功能与select类似,不过在处理流设备时,它能够提供额外的信息 ...

  2. CMMI整体理解

    CMMI的目的,一是质量,二是时间表,三是最低的成本:我的理解就是即以最低的成本,在既定的时间表要求下,达到相应的质量水平. CMMI是什么?我的理解是,CMMI并不是一个过程说明书,它不是告诉我们怎 ...

  3. 用函数datepart获取当前日期、周数、季度

    用函数datepart处理就可以了,示例:select datepart(weekday,getdate()) as 周内的第几日select datepart(week,getdate()) as ...

  4. Xcode升级更新后,恢复cocoapods以及插件的方法

    今天将手机系统更新到iOS9.3了,在Xcode7.1上做真机调试,提示找不到适合的SDK,才知道必须要升级Xcode才行,于是升级Xcode到7.3. 升级之后遇到很多麻烦,cocoapods没有了 ...

  5. git flow的安装和使用

    确保安装了git 1.windows系统下安装 进入cmd clone github上的gitflow到一个文件夹下 我这里clone到 c:\gitflow git clone git://gith ...

  6. Swing Note

                                      2. Swing容器:   内容窗格.分层窗格.玻璃窗格和一个可选的菜单条.(这四个同时包含在根窗格里)(请分别向其中添加组件)   ...

  7. [leetcode 226] Invert Tree

    1 题目: Invert a binary tree. 4 / \ 2 7 / \ / \ 1 3 6 9 to 4 / \ 7 2 / \ / \ 9 6 3 1 2 思路: 这是因为谷歌面试xx而 ...

  8. kali linux 渗透测试视频教程 第五课 社会工程学工具集

    第五课 社会工程学工具集 文/玄魂 教程地址:http://edu.51cto.com/course/course_id-1887.html   目录 第五课社会工程学工具集 SET SET的社会工程 ...

  9. DDD基本概念

    一条箴言是:如果值对象是可共享的,那么它们应该是不可变的.值对象应该保持很小.很简单 极力推荐将值对象实现为不可变的.它们由一个构造器创建,并且在它们的生命周期内永远不会被修改.当你想要得到这个对象的 ...

  10. atitit.查看预编译sql问号 本质and原理and查看原生sql语句

    atitit.查看预编译sql问号 本质and原理and查看原生sql语句 1. 预编译原理. 1 2. preparedStatement 有三大优点: 1 3. How to look  gene ...