基于TensorRT优化的Machine Translation
基于TensorRT优化的Machine Translation
机器翻译系统用于将文本从一种语言翻译成另一种语言。递归神经网络(RNN)是机器翻译中最流行的深度学习解决方案之一。
TensorRT机器翻译示例的一些示例包括:
- Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model
- Building An RNN Network Layer By Layer
4.1. Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model
此示例sample, sampleNMT演示了使用TensorRT API基于TensorFlow seq2seq模型实现的神经机器翻译(NMT)。TensorFlow seq2seq模型是一个开源的NMT项目,它使用深层神经网络将文本从一种语言翻译成另一种语言。
What does this sample do?
具体地说,这个示例是一个端到端的示例,它采用TensorFlow模型,构建一个引擎,并使用生成的网络运行推理。该示例是模块化的,因此可以作为机器翻译应用程序的起点。 此示例使用TensorFlow NMT(seq2seq)教程提供并培训的数据来实现德语到英语的翻译。
Where is this sample located?
此示例保存在GitHub: sampleNMT存储库中的samples/opensource/sampleNMT目录下。如果使用Debian或RPM包,则示例位于/usr/src/tensorrt/samples/sampleNMT。如果使用tar或zip包,则示例位于<extracted_path>/samples/sampleNMT。
How do I get started?
有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub: sampleNMT/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
4.2. Building An RNN Network Layer By Layer
这个示例sampleCharRNN使用TensorRT API逐层构建RNN网络,设置权重和输入/输出,然后执行推理。
What does this sample do?
具体地说,这个示例创建了一个CharRNN网络,它是在莎士比亚的小数据集上训练出来的。有关字符级建模的详细信息,请参见char rnn。
TensorFlow有一个有用的RNN教程,可以用来训练单词级模型。单词级模型学习所有可能单词序列的概率分布。因为我们的目标是训练一个char级别的模型,它学习一组所有可能特征的概率分布,所以需要做一些修改才能使TensorFlow样本工作。
Where is this sample located?
此示例保存在GitHub: sampleCharRNN存储库中的samples/opensource/sampleCharRNN目录下。如果使用Debian或RPM包,则示例位于
/usr/src/tensorrt/samples/sampleCharRNN。如果使用tar或zip包,则示例位于<extracted_path>/samples/sampleCharRNN。
How do I get started?
有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub: sampleCharRNN/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
基于TensorRT优化的Machine Translation的更多相关文章
- Phrase-Based & Neural Unsupervised Machine Translation基于短语非监督机器翻译
1. 前言 本文介绍一种无监督的机器翻译的模型.无监督机器翻译最早是<UNSUPERVISED NEURAL MACHINE TRANSLATION>提出.这个模型主要的特点,无需使用平行 ...
- 基于TensorRT车辆实时推理优化
基于TensorRT车辆实时推理优化 Optimizing NVIDIA TensorRT Conversion for Real-time Inference on Autonomous Vehic ...
- 神经机器翻译 - NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE
论文:NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE 综述 背景及问题 背景: 翻译: 翻译模型学习条件分布 ...
- Structural Features for Predicting the Linguistic Quality of Text: Applications to Machine Translation, Automatic Summarization and Human-Authored Text -paper
abstract句子结构是文本语言质量的关键,我们记录了以下实验结果:句法短语统计和其他结构特征对文本方面的预测能力.手工评估的句子fluency流利度用于机器翻译评估和文本摘要质量的评估是黄金准则. ...
- 对Neural Machine Translation by Jointly Learning to Align and Translate论文的详解
读论文 Neural Machine Translation by Jointly Learning to Align and Translate 这个论文是在NLP中第一个使用attention机制 ...
- Effective Approaches to Attention-based Neural Machine Translation(Global和Local attention)
这篇论文主要是提出了Global attention 和 Local attention 这个论文有一个译文,不过我没细看 Effective Approaches to Attention-base ...
- 【转载 | 翻译】Visualizing A Neural Machine Translation Model(神经机器翻译模型NMT的可视化)
转载并翻译Jay Alammar的一篇博文:Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models Wi ...
- 基于TensorRT 3的自动驾驶快速INT8推理
基于TensorRT 3的自动驾驶快速INT8推理 Fast INT8 Inference for Autonomous Vehicles with TensorRT 3 自主驾驶需要安全性,需要一种 ...
- 基于TensorRT的BERT实时自然语言理解(下)
基于TensorRT的BERT实时自然语言理解(下) BERT Inference with TensorRT 请参阅Python脚本bert_inference.py还有详细的Jupyter not ...
随机推荐
- POJ2226 不错的最小顶点覆盖
题意: 给你一个n * m 的矩阵,上面有" * " 和 " . " ,让你用少的木板吧所有" * "覆盖,木板宽度是1,长度 ...
- HR:“最喜欢阿里出来的程序员了,技术又好又耐艹!” 我:???
面试造火箭,进厂拧螺丝?真的是这样吗? 缘起 估计不少同学都是被标题吸引进来的.事先声明,这句话不是我虚构的,而是我实实在在从同事的口中听到的,而且还不止一次. 当时的场景就是很正常的交谈,别人也并没 ...
- 基于ray的分布式机器学习(二)
基本思路:基于parameter server + multiple workers模式.同步方式:parameter server负责网络参数的统一管理,每次迭代均将参数发送给每一个worker,多 ...
- 推荐几款MySQL相关工具
前言: 随着互联网技术的不断发展, MySQL 相关生态也越来越完善,越来越多的工具涌现出来.一些公司或个人纷纷开源出一些不错的工具,本篇文章主要介绍几款 MySQL 相关实用工具.提醒下,这里并不介 ...
- (转)netcore原生websocket客户端写法(ClientWebSocket)
代码: using System; using System.Net.WebSockets; using System.Text; using System.Threading; using Syst ...
- 墙裂推荐一波mysql学习资源
在日常工作与学习中,无论是开发.运维.测试,还是架构师,数据库是一门必不可少的"必修课", 也是必备的涨薪神器.在互联网公司中,开源数据库用得比较多的当属 MySQL 了. 但my ...
- 【大白话 mysql】mysql 事务与日志原理
在后端面试中,mysql是比不可少的一环,其中对事务和日志的考察更是"重灾区", 大部分同学可能都知道mysql通过redolog.binlog和undolog保证了sql的事务性 ...
- Spring Cloud 升级之路 - 2020.0.x - 5. 理解 NamedContextFactory
spring-cloud-commons 中参考了 spring-cloud-netflix 的设计,引入了 NamedContextFactory 机制,一般用于对于不同微服务的客户端模块使用不同的 ...
- 【zombie】如何查看并杀死僵尸进程?
[zombie]如何查看并杀死僵尸进程? 赏金Micheal关注 2019.03.31 19:40:15字数 1,016阅读 4,373 僵尸进程定义 In UNIX System terminolo ...
- qemu:///system 没有连接驱动器可用;读取数据时进入文件终点: 输入/输出错误
原因 1. KVM的相关包 装少了 2KVM的相关包 重新安装 3 May 31 15:22:55 localhost libvirtd: 2019-05-31 07:22:55.554+0000: ...