基于TensorRT优化的Machine Translation

机器翻译系统用于将文本从一种语言翻译成另一种语言。递归神经网络(RNN)是机器翻译中最流行的深度学习解决方案之一。

TensorRT机器翻译示例的一些示例包括:

4.1. Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model

此示例sample, sampleNMT演示了使用TensorRT API基于TensorFlow seq2seq模型实现的神经机器翻译(NMT)。TensorFlow seq2seq模型是一个开源的NMT项目,它使用深层神经网络将文本从一种语言翻译成另一种语言。

What does this sample do?

具体地说,这个示例是一个端到端的示例,它采用TensorFlow模型,构建一个引擎,并使用生成的网络运行推理。该示例是模块化的,因此可以作为机器翻译应用程序的起点。              此示例使用TensorFlow NMT(seq2seq)教程提供并培训的数据来实现德语到英语的翻译。

Where is this sample located?

此示例保存在GitHub: sampleNMT存储库中的samples/opensource/sampleNMT目录下。如果使用Debian或RPM包,则示例位于/usr/src/tensorrt/samples/sampleNMT。如果使用tar或zip包,则示例位于<extracted_path>/samples/sampleNMT。

How do I get started?

有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub: sampleNMT/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。

4.2. Building An RNN Network Layer By Layer

这个示例sampleCharRNN使用TensorRT API逐层构建RNN网络,设置权重和输入/输出,然后执行推理。

What does this sample do?

具体地说,这个示例创建了一个CharRNN网络,它是在莎士比亚的小数据集上训练出来的。有关字符级建模的详细信息,请参见char rnn。

TensorFlow有一个有用的RNN教程,可以用来训练单词级模型。单词级模型学习所有可能单词序列的概率分布。因为我们的目标是训练一个char级别的模型,它学习一组所有可能特征的概率分布,所以需要做一些修改才能使TensorFlow样本工作。

Where is this sample located?

此示例保存在GitHub: sampleCharRNN存储库中的samples/opensource/sampleCharRNN目录下。如果使用Debian或RPM包,则示例位于

/usr/src/tensorrt/samples/sampleCharRNN。如果使用tar或zip包,则示例位于<extracted_path>/samples/sampleCharRNN。

How do I get started?

有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub: sampleCharRNN/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。

基于TensorRT优化的Machine Translation的更多相关文章

  1. Phrase-Based & Neural Unsupervised Machine Translation基于短语非监督机器翻译

    1. 前言 本文介绍一种无监督的机器翻译的模型.无监督机器翻译最早是<UNSUPERVISED NEURAL MACHINE TRANSLATION>提出.这个模型主要的特点,无需使用平行 ...

  2. 基于TensorRT车辆实时推理优化

    基于TensorRT车辆实时推理优化 Optimizing NVIDIA TensorRT Conversion for Real-time Inference on Autonomous Vehic ...

  3. 神经机器翻译 - NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

    论文:NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE 综述 背景及问题 背景: 翻译: 翻译模型学习条件分布 ...

  4. Structural Features for Predicting the Linguistic Quality of Text: Applications to Machine Translation, Automatic Summarization and Human-Authored Text -paper

    abstract句子结构是文本语言质量的关键,我们记录了以下实验结果:句法短语统计和其他结构特征对文本方面的预测能力.手工评估的句子fluency流利度用于机器翻译评估和文本摘要质量的评估是黄金准则. ...

  5. 对Neural Machine Translation by Jointly Learning to Align and Translate论文的详解

    读论文 Neural Machine Translation by Jointly Learning to Align and Translate 这个论文是在NLP中第一个使用attention机制 ...

  6. Effective Approaches to Attention-based Neural Machine Translation(Global和Local attention)

    这篇论文主要是提出了Global attention 和 Local attention 这个论文有一个译文,不过我没细看 Effective Approaches to Attention-base ...

  7. 【转载 | 翻译】Visualizing A Neural Machine Translation Model(神经机器翻译模型NMT的可视化)

    转载并翻译Jay Alammar的一篇博文:Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models Wi ...

  8. 基于TensorRT 3的自动驾驶快速INT8推理

    基于TensorRT 3的自动驾驶快速INT8推理 Fast INT8 Inference for Autonomous Vehicles with TensorRT 3 自主驾驶需要安全性,需要一种 ...

  9. 基于TensorRT的BERT实时自然语言理解(下)

    基于TensorRT的BERT实时自然语言理解(下) BERT Inference with TensorRT 请参阅Python脚本bert_inference.py还有详细的Jupyter not ...

随机推荐

  1. Msfvenonm生成一个后门木马

    在前一篇文章中我讲了什么是Meterpreter,并且讲解了Meterpreter的用法.传送门-->Metasploit之Meterpreter 今天我要讲的是我们用Msfvenom制作一个木 ...

  2. Andrew Ng机器学习算法入门((七):特征选择和多项式回归

    特征选择 还是回归到房价的问题.在最开始的问题中,我们假设房价与房屋面积有关,那么最开始对房价预测的时候,回归方程可能如下所示: 其中frontage表示的房子的长,depth表示的是房子的宽. 但长 ...

  3. 从零开始搞监控系统(1)——SDK

    目前市面上有许多成熟的前端监控系统,但我们没有选择成品,而是自己动手研发.这里面包括多个原因: 填补H5日志的空白 节约公司费用支出 可灵活地根据业务自定义监控 回溯时间能更长久 反哺运营和产品,从而 ...

  4. C# 多线程技术

    这节讲一下多线程(Thread)技术. 在讲线程之前,先区分一下程序,进程,线程三者的区别,大体上说,一个程序可以分为多个进程,一个进程至少由一个线程去执行,它们是层层包含的关系.我们写的程序,就是一 ...

  5. Java并发编程(二)如何保证线程同时/交替执行

    第一篇文章中,我用如何保证线程顺序执行的例子作为Java并发系列的开胃菜.本篇我们依然不会有源码分析,而是用另外两个多线程的例子来引出Java.util.concurrent中的几个并发工具的用法. ...

  6. 【近取 key】Alpha 阶段任务分配

    项目 内容 这个作业属于哪个课程 2021春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 alpha阶段初始任务分配 我在这个课程的目标是 进一步提升工程化开发能力,积累团队协作经验,熟悉 ...

  7. Beta——事后分析

    事后总结 NameNotFound 团队 项目 内容 北航-2020-软件工程(春季学期) 班级博客 要求 Beta事后分析 课程目标 通过团队合作完成一个软件项目的开发 会议截图 一.设想和目标 软 ...

  8. Java中对象池的本质是什么?(实战分析版)

    简介 对象池顾名思义就是存放对象的池,与我们常听到的线程池.数据库连接池.http连接池等一样,都是典型的池化设计思想. 对象池的优点就是可以集中管理池中对象,减少频繁创建和销毁长期使用的对象,从而提 ...

  9. 【转载】geany linux python编译器 开源

    http://www.dekiru.cn/?p=1491 Geany 不好用,建议用一些好用的编辑器或ide Subliem Text 或 VS code Pycharm等. 设置运行环境 菜单栏–生 ...

  10. gcc 版本

    $ gcc --versiongcc (Ubuntu 5.4.0-6kord1~16.04.4k2) 5.4.0 20160609Copyright (C) 2015 Free Software Fo ...