YAPTCHA

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 862    Accepted Submission(s): 452

Problem Description
The
math department has been having problems lately. Due to immense amount
of unsolicited automated programs which were crawling across their
pages, they decided to put
Yet-Another-Public-Turing-Test-to-Tell-Computers-and-Humans-Apart on
their webpages. In short, to get access to their scientific papers, one
have to prove yourself eligible and worthy, i.e. solve a mathematic
riddle.

However, the test turned out difficult for some math
PhD students and even for some professors. Therefore, the math
department wants to write a helper program which solves this task (it is
not irrational, as they are going to make money on selling the
program).

The task that is presented to anyone visiting the start page of the math department is as follows: given a natural n, compute

where [x] denotes the largest integer not greater than x.
 
Input
The
first line contains the number of queries t (t <= 10^6). Each query
consist of one natural number n (1 <= n <= 10^6).
 
Output
For each n given in the input output the value of Sn.
 
Sample Input
13
1
2
3
4
5
6
7
8
9
10
100
1000
10000
 
Sample Output
0
1
1
2
2
2
2
3
3
4
28
207
1609
思路:素数打表+威尔逊定理;
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<set>
7 #include<math.h>
8 using namespace std;
9 typedef long long LL;
10 bool prime[4000000];
11 int sum[4000009];
12 int main(void)
13 {
14 int n;
15 memset(prime,0,sizeof(prime));
16 for(int i = 2; i < 3000; i++)
17 {
18 if(!prime[i])
19 for(int j = i; (i*j) <=4000007 ; j++)
20 {
21 prime[i*j] = true;
22 }
23 }
24 memset(sum,0,sizeof(sum));
25 for(int i = 1; i <= 1000000; i++)
26 {
27 if(!prime[3*i+7])
28 sum[i] = sum[i-1] + 1;
29 else sum[i] = sum[i-1];
30 }
31 scanf("%d",&n);
32 while(n--)
33 {
34 int ask ;
35 scanf("%d",&ask);
36 printf("%d\n",sum[ask]);
37 }
38 return 0;
39 }

YAPTCHA(hdu2973)的更多相关文章

  1. YAPTCHA(HDU2973)【威尔逊定理】

    威尔逊原理.即对于素数p,有(p-1)!=-1( mod p). 首先,将原式变形为[ (3×k+6)! % (3×k+7) + 1] / (3×k+7),所以: 1.3×k+7是素数,结果为1, 2 ...

  2. hdu2973 YAPTCHA【威尔逊定理】

    <题目链接> 题目大意: The task that is presented to anyone visiting the start page of the math departme ...

  3. uva 1434 - YAPTCHA(数论)

    题目链接:uva 1434 - YAPTCHA 题目大意:给定n和k,求题目中给定的式子S(n). 解题思路:威尔逊定理,x为素数时有,((x−1)!+1)%x==0,所以对于本题.假设3*k+7为素 ...

  4. HDU2973(威尔逊定理)

    YAPTCHA Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  5. 威尔逊定理--HDU2973

    参考博客 HDU-2973 题目 Problem Description The math department has been having problems lately. Due to imm ...

  6. HDU - 2973 - YAPTCHA

    先上题目: YAPTCHA Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  7. HDU 2973 YAPTCHA (威尔逊定理)

    YAPTCHA Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  8. HDU2937 YAPTCHA(威尔逊定理)

    YAPTCHA Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  9. hdu 2973"YAPTCHA"(威尔逊定理)

    传送门 题意: 给出自然数 n,计算出 Sn 的值,其中 [ x ]表示不大于 x 的最大整数. 题解: 根据威尔逊定理,如果 p 为素数,那么 (p-1)! ≡ -1(mod p),即 (p-1)! ...

随机推荐

  1. c语言转义字符如下

    #define MQTT_EVENT_REPORT_BOX_STATUS_FORMAT "{"\                                           ...

  2. hbase参数调优

    @ 目录 HBase参数调优 hbase.regionserver.handler.count hbase.hregion.max.filesize hbase.hregion.majorcompac ...

  3. Identity Server 4 从入门到落地(六)—— 简单的单页面客户端

    前面的部分: Identity Server 4 从入门到落地(一)-- 从IdentityServer4.Admin开始 Identity Server 4 从入门到落地(二)-- 理解授权码模式 ...

  4. spring整合mybatis — 更新完毕

    1.准备工作 -- 导入依赖 <dependency> <groupId>org.springframework</groupId> <artifactId& ...

  5. win10产品密钥 win10永久激活密钥(可激活win10所有版本)

    https://www.win7w.com/win10jihuo/18178.html#download 很多人都在找2019最新win10永久激活码,其实win10激活码不管版本新旧都是通用的,也就 ...

  6. 案例 高级定时器和通用定时器产生pwm的区别 gd32和stm32

  7. 【分布式】ZooKeeper权限控制之ACL(Access Control List)访问控制列表

    zk做为分布式架构中的重要中间件,通常会在上面以节点的方式存储一些关键信息,默认情况下,所有应用都可以读写任何节点,在复杂的应用中,这不太安全,ZK通过ACL机制来解决访问权限问题,详见官网文档:ht ...

  8. Linux学习 - 挂载命令

    一.mount 1 功能 将外设手工挂载到目标挂载点 2 语法 mount  [-t 文件系统]  [设备文件名]  [挂载点] 3 范例 mkdir  /mnt/cdrom 在/mnt下创建一个cd ...

  9. SVN终端演练(个人开发\多人开发)

    SVN终端演练(个人开发) ### 1. 命令格式 命令行格式: svn <subcommand> [options] [args]       svn 子命令 [选项] [参数]     ...

  10. 基于阿里云 ecs 使用 docker 方式部署 showDoc

    官网文档:https://www.showdoc.cc/help?page_id=65610 (建议先看下这个) 首先说明一下,我 ecs 镜像是 CentOS 7.6 64位 1. 首先在 服务器上 ...