Balancing Act
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 12703   Accepted: 5403

Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two. 

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number. 

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2
题意:给你n个点,n-1条边形成一颗棵树,然后让你找树的重心;
思路:树形dp;
先dfs求出每个点所形成的子树的权值,然后再dfs求权值中的最大值更新dp。因为当前点的各个子树的权值都知道,那么只要求出当前节点父亲节点的权值,nod-sum[n];
复杂度O(n);
 1 #include<stdio.h>
2 #include<math.h>
3 #include<queue>
4 #include<algorithm>
5 #include<string.h>
6 #include<iostream>
7 #include<stack>
8 #include<vector>
9 using namespace std;
10 typedef long long LL;
11 vector<int>vec[20005];
12 int dp[20005];
13 bool flag[20005];
14 int sum[20005];
15 void dfs(int n);
16 void dfs2(int n);
17 int nod;
18 int main(void)
19 {
20 int t;
21 scanf("%d",&t);
22 while(t--)
23 {
24 int n;
25 scanf("%d",&nod);
26 n = nod;
27 for(int i = 0;i < 20005;i++)
28 vec[i].clear();
29 for(int i = 0; i < n-1; i++)
30 {
31 int a,b;
32 scanf("%d %d",&a,&b);
33 vec[a].push_back(b);
34 vec[b].push_back(a);
35 }
36 memset(flag,0,sizeof(flag));
37 memset(dp,0,sizeof(dp));
38 memset(sum,0,sizeof(sum));
39 dfs(1);
40 memset(flag,0,sizeof(flag));
41 dfs2(1);
42 int id = 0;
43 int maxx = 1e9;
44 for(int i = 1; i <= n; i++)
45 {
46 if(maxx > dp[i])
47 maxx = dp[i],id = i;
48 }
49 printf("%d %d\n",id,maxx);
50 }
51 return 0;
52 }
53 void dfs(int n)
54 {
55 int i,j;
56 flag[n] = true;
57 for(i = 0; i < vec[n].size(); i++)
58 {
59 int id = vec[n][i];
60 if(!flag[id])
61 {
62 dfs(id);
63 sum[n]+=sum[id];
64 }
65 }
66 sum[n]++;
67 }
68 void dfs2(int n)
69 {
70 flag[n] = true;
71 int i,j;
72 for(i = 0; i < vec[n].size(); i++)
73 {
74 int id = vec[n][i];
75 if(!flag[id])
76 {
77 dp[n] = max(dp[n],sum[id]);
78 dfs2(id);
79 }
80 }
81 dp[n] = max(dp[n],nod-sum[n]);
82 }

Balancing Act(poj1655)的更多相关文章

  1. 『Balancing Act 树的重心』

    树的重心 我们先来认识一下树的重心. 树的重心也叫树的质心.找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡. 根据树的重心的定义,我们可 ...

  2. poj1655 Balancing Act 找树的重心

    http://poj.org/problem? id=1655 Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  3. POJ1655 Balancing Act(树的重心)

    题目链接 Balancing Act 就是求一棵树的重心,然后统计答案. #include <bits/stdc++.h> using namespace std; #define REP ...

  4. poj-1655 Balancing Act(树的重心+树形dp)

    题目链接: Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11845   Accepted: 4 ...

  5. poj1655 Balancing Act (dp? dfs?)

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14247   Accepted: 6026 De ...

  6. POJ 1655 Balancing Act 树的重心

    Balancing Act   Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. ...

  7. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  8. POJ 1655.Balancing Act 树形dp 树的重心

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14550   Accepted: 6173 De ...

  9. POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)

    关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...

随机推荐

  1. HDC2021技术分论坛:异构组网如何解决共享资源冲突?

    作者:lijie,HarmonyOS软总线领域专家 相信大家对HarmonyOS的"超级终端"比较熟悉了.那么,您知道超级终端场景下的多种设备在不同环境下是如何组成一个网络的吗?这 ...

  2. == 和 equals() 方法的区别

    == 在比较基本数据类型时,是比较两边的数据的值是否相等 // 整数类型 int num1 = 1; // 双精度浮点数类型 double num2 = 1.0; // 输出结果为 true Syst ...

  3. Android editttext只能输入不能删除(选中后被软键盘遮住)

    感谢https://www.dutycode.com/post-20.html: 解决方法:在布局外外嵌一层scrollview.

  4. python 多态、组合、反射

    目录 多态.多态性 多态 多态性 鸭子类型 父类限制子类的行为 组合 面向对象的内置函数 反射 多态.多态性 多态 多态通俗理解起来,就像迪迦奥特曼有三种形态一样,怎么变还是迪迦奥特曼 定义:多态指的 ...

  5. RTSP, RTP, RTCP, RTMP傻傻分不清?

    RTSP基于TCP传输请求和响应报文,RTP基于UDP传输流媒体数据,RTCP基于UDP传送传输质量信息(如丢包和延迟). 比如喀什一个局域网内10个人同时点播广州的同一个源,喀什和广州之间就要传10 ...

  6. Spark(七)【RDD的持久化Cache和CheckPoint】

    RDD的持久化 1. RDD Cache缓存 ​ RDD通过Cache或者Persist方法将前面的计算结果缓存,默认情况下会把数据以缓存在JVM的堆内存中.但是并不是这两个方法被调用时立即缓存,而是 ...

  7. Set、Map、WeakSet 和 WeakMap 的区别

    先总结: Set1.  成员不能重复2. 只有健值,没有健名,有点类似数组.3. 可以遍历,方法有add, delete,hasweakSet 1. 成员都是对象 2. 成员都是弱引用,随时可以消失. ...

  8. ERROR 1690 (22003): BIGINT UNSIGNED value is out of range in..的错误 [转]

    问题: ERROR 1690 (22003): BIGINT UNSIGNED value is out of range in..的错误 解决方法: 把没被singed的变量临时变更signed去处 ...

  9. 01 nodejs MVC gulp 项目搭建

    文本内容 使用generator-express创建nodejs MVC DEMO 使用gulp实时编译项目 npm安装二进制包,无须再编译wget https://nodejs.org/dist/v ...

  10. Linux实体服务器添加网卡

    目录 一.简介 二.配置 三.添加网卡 四.总结 一.简介 服务器如果搭配了网口,在插入网线或者光纤后会亮灯.如果发现不亮,可以关闭机器查看亮不亮,因为有的时候系统会把网口禁用,进入到系统反而不亮了, ...