Balancing Act
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 12703   Accepted: 5403

Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two. 

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number. 

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2
题意:给你n个点,n-1条边形成一颗棵树,然后让你找树的重心;
思路:树形dp;
先dfs求出每个点所形成的子树的权值,然后再dfs求权值中的最大值更新dp。因为当前点的各个子树的权值都知道,那么只要求出当前节点父亲节点的权值,nod-sum[n];
复杂度O(n);
 1 #include<stdio.h>
2 #include<math.h>
3 #include<queue>
4 #include<algorithm>
5 #include<string.h>
6 #include<iostream>
7 #include<stack>
8 #include<vector>
9 using namespace std;
10 typedef long long LL;
11 vector<int>vec[20005];
12 int dp[20005];
13 bool flag[20005];
14 int sum[20005];
15 void dfs(int n);
16 void dfs2(int n);
17 int nod;
18 int main(void)
19 {
20 int t;
21 scanf("%d",&t);
22 while(t--)
23 {
24 int n;
25 scanf("%d",&nod);
26 n = nod;
27 for(int i = 0;i < 20005;i++)
28 vec[i].clear();
29 for(int i = 0; i < n-1; i++)
30 {
31 int a,b;
32 scanf("%d %d",&a,&b);
33 vec[a].push_back(b);
34 vec[b].push_back(a);
35 }
36 memset(flag,0,sizeof(flag));
37 memset(dp,0,sizeof(dp));
38 memset(sum,0,sizeof(sum));
39 dfs(1);
40 memset(flag,0,sizeof(flag));
41 dfs2(1);
42 int id = 0;
43 int maxx = 1e9;
44 for(int i = 1; i <= n; i++)
45 {
46 if(maxx > dp[i])
47 maxx = dp[i],id = i;
48 }
49 printf("%d %d\n",id,maxx);
50 }
51 return 0;
52 }
53 void dfs(int n)
54 {
55 int i,j;
56 flag[n] = true;
57 for(i = 0; i < vec[n].size(); i++)
58 {
59 int id = vec[n][i];
60 if(!flag[id])
61 {
62 dfs(id);
63 sum[n]+=sum[id];
64 }
65 }
66 sum[n]++;
67 }
68 void dfs2(int n)
69 {
70 flag[n] = true;
71 int i,j;
72 for(i = 0; i < vec[n].size(); i++)
73 {
74 int id = vec[n][i];
75 if(!flag[id])
76 {
77 dp[n] = max(dp[n],sum[id]);
78 dfs2(id);
79 }
80 }
81 dp[n] = max(dp[n],nod-sum[n]);
82 }

Balancing Act(poj1655)的更多相关文章

  1. 『Balancing Act 树的重心』

    树的重心 我们先来认识一下树的重心. 树的重心也叫树的质心.找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡. 根据树的重心的定义,我们可 ...

  2. poj1655 Balancing Act 找树的重心

    http://poj.org/problem? id=1655 Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  3. POJ1655 Balancing Act(树的重心)

    题目链接 Balancing Act 就是求一棵树的重心,然后统计答案. #include <bits/stdc++.h> using namespace std; #define REP ...

  4. poj-1655 Balancing Act(树的重心+树形dp)

    题目链接: Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11845   Accepted: 4 ...

  5. poj1655 Balancing Act (dp? dfs?)

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14247   Accepted: 6026 De ...

  6. POJ 1655 Balancing Act 树的重心

    Balancing Act   Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. ...

  7. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  8. POJ 1655.Balancing Act 树形dp 树的重心

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14550   Accepted: 6173 De ...

  9. POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)

    关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...

随机推荐

  1. Oracle-SQL语句的语法顺序和执行顺序

    SQL语句的语法顺序和执行顺序了,我们常见的SQL语法顺序如下: SELECT DISTINCT <Top Num> <select list>FROM [left_table ...

  2. SCRDet——对小物体和旋转物体更具鲁棒性的模型

    引言 明确提出了三个航拍图像领域内面对的挑战: 小物体:航拍图像经常包含很多复杂场景下的小物体. 密集:如交通工具和轮船类,在航拍图像中会很密集.这个DOTA数据集的发明者也提到在交通工具和轮船类的检 ...

  3. [源码解析] PyTorch 分布式 Autograd (6) ---- 引擎(下)

    [源码解析] PyTtorch 分布式 Autograd (6) ---- 引擎(下) 目录 [源码解析] PyTtorch 分布式 Autograd (6) ---- 引擎(下) 0x00 摘要 0 ...

  4. 从源码看RequestMappingHandlerMapping的注册与发现

    1.问题的产生 日常开发中,大多数的API层中@Controller注解和@RequestMapping注解都会被使用在其中,但是为什么标注了@Controller和@RequestMapping注解 ...

  5. Java 性能优化的 50 个细节

    在JAVA程序中,性能问题的大部分原因并不在于JAVA语言,而是程序本身.养成良好的编码习惯非常重要,能够显著地提升程序性能. #尽量在合适的场合使用单例 使用单例可以减轻加载的负担,缩短加载的时间, ...

  6. 常见排序——Java实现

    1 package struct; 2 3 /** 4 * 5 * @作者:dyy 6 * @公司:陕西科技大学 7 * @修改日期: 8 * @邮箱:1101632375@qq.com 9 * @描 ...

  7. rust常用技巧

    允许未使用的方法,写在文件开头,可过滤过掉该项提示 #![allow(unused)]

  8. MBean代码例子

    public class ServerImpl { public final long startTime; public ServerImpl() { startTime = System.curr ...

  9. 基于阿里云 ecs 使用 docker 方式部署 showDoc

    官网文档:https://www.showdoc.cc/help?page_id=65610 (建议先看下这个) 首先说明一下,我 ecs 镜像是 CentOS 7.6 64位 1. 首先在 服务器上 ...

  10. maven管理本地jar包

    maven作为包管理工具,好处不必多说.但是有些情况,比如需要引入第三方包,如快递鸟,支付宝,微信等jar包(当然有可能直接提供maven依赖),如果直接下载到本地之后,怎么整合到自己的maven工程 ...