ParallelStream 处理数据

Stream 接口提供了parallelStream方法来将集合转换为并行流。即将一个集合分为多个数据块,并用不同的线程分别处理每个数据块的流。

并且使用parallelStream 时无需担心内部变量控制,线程数量等问题。

如使用并行流计算1至100000累加之和:

  • 最后一次parallel或sequential调用会影响整个流水线,即如下例子中会并行执行。
  • parallelStream使用得默认核心数为Runtime.getRuntime().availableProcessors() - 1。

    可通过配置java.util.concurrent.ForkJoinPool.common.parallelism改变默认的核心数。
        Stream.iterate(1L, param1 -> Math.addExact(param1, 1))
.limit(100000)
.parallel()
.sequential()
.parallel()
.reduce(0L, Math::addExact)
.longValue();

parallelStream 性能分析

通常我们认为在数据量到达一定程度时,使用多线程计算会获得更好的性能。但实际效果应该在测量比较之后才直到。

使用并行流和顺序流别计算1至100000 的累加之和,在我的四核英特尔机器上运行结果如下:

        long start = System.currentTimeMillis();
Stream.iterate(1L, param1 -> Math.addExact(param1, 1))
.limit(100000)
.parallel()
.reduce(0L, Math::addExact)
.longValue();
System.out.println(String.format("Parallel accumulate sum, used %d ms.", System.currentTimeMillis() - start)); start = System.currentTimeMillis();
LongStream.rangeClosed(1, 100000)
.reduce(0L, Math::addExact);
System.out.println(String.format("Sequential accumulate sum, used %d ms.", System.currentTimeMillis() - start)); Parallel accumulate sum, used 64 ms.
Sequential accumulate sum, used 8 ms.

通过以上结果可以看到,并行流计算的耗时竟然是顺序流的好几倍,这与我们的预期结果差距十分的大。

要想明白这差距的原因,首先得明白影响上面并行流的速度的因素有那些:

  • 元素是否容易拆分为多个数据块, 很明显Iterate 很难拆分为多个独立数据块,因为每次应用这个函数都要依赖于前一个元素。
  • 元素是否频繁拆装箱, 流中Long -> long 频繁拆装箱也影响了效率。而LongStream 中并没有这个消耗。

修复上面两个影响并行流的速度的问题后,重新运行结果如下:


long start = System.currentTimeMillis();
LongStream.rangeClosed(1, 100000)
.parallel()
.reduce(0L, Math::addExact);
System.out.println(String.format("Parallel accumulate sum, used %d ms.", System.currentTimeMillis() - start)); start = System.currentTimeMillis();
LongStream.rangeClosed(1, 100000)
.reduce(0L, Math::addExact);
System.out.println(String.format("Sequential accumulate sum, used %d ms.", System.currentTimeMillis() - start)); Parallel accumulate sum, used 7 ms.
Sequential accumulate sum, used 3 ms.

并行流的速度得到了很大提升,这表明并行化时需要使用正确的数据结构

但是顺序流的速度却仍然更快,这说明并行化也是有代价的,如下:

  • 内核之间交换数据的花销较大。
  • 要保证在内核中的处理时间大于内核间的数据交换时间,即数据到达一定的量级。

而并行过程需要对流要递归划分,再把每个子流的归纳操作分配到不同的线程,最后把这些操作的结果合并成一个值。

在子流归纳操作时间过短时,并行化并没有带来性能提升,反而是更加慢了。

再将数据提升至上亿级别进行运算,并行流终于取得了一些领先。

        long start = System.currentTimeMillis();
LongStream.rangeClosed(1, 100000000)
.parallel()
.reduce(0L, Math::addExact);
System.out.println(String.format("Parallel accumulate sum, used %d ms.", System.currentTimeMillis() - start)); start = System.currentTimeMillis();
LongStream.rangeClosed(1, 100000000)
.reduce(0L, Math::addExact);
System.out.println(String.format("Sequential accumulate sum, used %d ms.", System.currentTimeMillis() - start));
Parallel accumulate sum, used 79 ms.
Sequential accumulate sum, used 264 ms.

高效使用ParallelStream

关于在什么地方使用parallelStream 没有绝对的建议,而是只能做定性分析。下列是一些可能影响性能的地方:

  • 测量比较,并行流并不都比顺序流快。
  • 避免拆装箱,这对性能有较大影响。可使用原始类型IntStream, LongStream等。
  • 依赖元素顺序的操作,并行性能较差。如findAny()性能会优于findFirst(),因为它不依赖于顺序。
  • 数据量大小,估算一个元素通过流水线的大概处理时间,得到处理完整个集合的处理时间。
  • 流是否易于拆分,如ArrayList 比LinkedList 更易于拆分,前者无需遍历,后者需要遍历之后才能拆分。
  • 终端操作时,合并操作的代价大小(例如Collector中的combiner方法)。

Fork/Join

ParallelStream流背后使用的基础架构是Java 7中引入的Fork/Join分支合并框架。

分支/合并框架的目的是以递归方式将可以并行的任务拆分成更小的任务,然后将每个子任务的结果合并起来生成整体结果。

这其实就是分治算法的并行版本。

Java ParallelStream的更多相关文章

  1. 深入浅出parallelStream

    援引:http://blog.csdn.net/u011001723/article/details/52794455 感谢作者的分享!感谢作者为JDK8的学习所做的努力. about Stream ...

  2. Spark案例分析

    一.需求:计算网页访问量前三名 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /* ...

  3. 【Java】关于Java8 parallelStream并发安全的思考

    背景 Java8的stream接口极大地减少了for循环写法的复杂性,stream提供了map/reduce/collect等一系列聚合接口,还支持并发操作:parallelStream. 在爬虫开发 ...

  4. java并行之parallelStream与CompletableFuture比较

    1. import java.util.Arrays; import java.util.List; import java.util.concurrent.CompletableFuture; im ...

  5. Java 8里 Stream和parallelStream的区别

    Java中Stream和parallelStream,前者是单管,后者是多管,运行时间上做一个小对比,直接上代码: /** * * @author zhangy6 * <p>对比Strea ...

  6. Java Arrays.asList(0,1,2,3,4,5,6,7,8,9).parallelStream().forEach 进行循环获取HttpServletRequest的为Null的解决方案

    Arrays.asList(0,1,2,3,4,5,6,7,8,9).parallelStream().forEach() parallelStream是并行执行流的每个元素,也就是多线程执行,这样就 ...

  7. JAVA使用并行流(ParallelStream)时要注意的一些问题

    https://blog.csdn.net/xuxiaoyinliu/article/details/73040808

  8. Java 8函数编程轻松入门(五)并行化(parallel)

    1.并发与并行的区别 并发: 一个时间段内有几个程序都处于已启动到运行完毕之间,且这几个程序都是在同一个处理机上运行.但在任一个时刻点只有一个程序在处理机上运行 并行: 在同一个时刻,多核处理多个任务 ...

  9. Java 8 指南

    Benjamin Winterberg “Java is still not dead—and people are starting to figure that out.” 欢迎阅读我对 Java ...

随机推荐

  1. DL基础补全计划(一)---线性回归及示例(Pytorch,平方损失)

    PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(Bl ...

  2. JavaWeb入门知识梳理

    万维网 Web App(Web应用程序)是一种可以通过万维网访问的应用程序,用户只需要连接互联网和计算机安装浏览器,即可通过URI在线使用某个Web App,而不需要再安装客户端到计算机上.Web A ...

  3. {"errcode":40017,"errmsg":"invalid button type hint: [I8nq_a0783sha1]"}

    在开发微信公众号 添加菜单时遇到问题 一直提示:{"errcode":40017,"errmsg":"invalid button type hint ...

  4. buu Youngter-drive

    一.查壳,发现是upx的壳,用自解压方式,脱下壳 二.之后发现打不开了,应该是要修复,不想修复了,直接拖入ida 找到关键函数,中间发生一点小插曲,发现堆栈不平衡,然后导致F5反编译失败,百度了下是A ...

  5. 如何在Apache HttpClient中设置TLS版本

    1.简介 Apache HttpClient是一个底层.轻量级的客户端HTTP库,用于与HTTP服务器进行通信. 在本教程中,我们将学习如何在使用HttpClient时配置支持的传输层安全(TLS)版 ...

  6. 【LeetCode】933.最近的请求次数

    933.最近的请求次数 知识点:队列: 题目描述 写一个 RecentCounter 类来计算特定时间范围内最近的请求. 请你实现 RecentCounter 类: RecentCounter() 初 ...

  7. python -- 结构数据类型(列表、元组、集合、字典)

    一.列表 列表表示一组有序的元素,这些元素可以是数字.字符串,也可以是另一个列表. # ----------------------------------------# 列表(list):一组有序的 ...

  8. Unittest方法 -- 测试断言

    """断言详解"""from unittest_1.it import *def add(a,b): return a - bclass B ...

  9. 【C#】C#中使用GDAL3(一):Windows下超详细编译C#版GDAL3.3.0(VS2015+.NET 4+32位/64位)

    转载请注明原文地址:https://www.cnblogs.com/litou/p/15004877.html 目录 一.介绍 二.编译准备 三.编译SQLite 四.编译LibTiff 五.编译PR ...

  10. 完整的URL是怎样的?

    完整的URL字段解读: URL:http://localhost:80/MzyPractice/chapter10/testb.php?name=Mei&radio=Test#dowel ht ...