从 ThreadLocal 到 AsyncLocal
前些天跟大佬们在群里讨论如何在不使用构造函数,不增加方法参数的情况下把一个上下文注入到方法内部使用,得出的结论是 AsyncLocal 。感叹自己才疏学浅,居然才知道有 AsyncLocal 这种神器。于是赶紧恶补一下。
ThreadLocal
要说 AsyncLocal 还得先从 ThreadLocal 说起。ThreadLocal 封装的变量,可以在线程间进行隔离。不同线程对同一个变量的修改只在当前线程有效。这个应该大家都比较熟悉不多说了。下面简单演示一下:threadLocal 初始值为1,然后启动多个线程对这个变量进行修改,最后主线程等待1秒,保证其它线程都执行成功后再次打印threadLocal的值。
ThreadLocal<int> threadLocal = new ThreadLocal<int>();
threadLocal.Value = 1;
Console.WriteLine("thread id {0} value:{1} START", Thread.CurrentThread.ManagedThreadId, threadLocal.Value);
new Thread(() => {
threadLocal.Value = 2;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, threadLocal.Value);
}).Start();
new Thread(() => {
threadLocal.Value = 3;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, threadLocal.Value);
}).Start();
new Thread(() => {
threadLocal.Value = 4;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, threadLocal.Value);
}).Start();
new Thread(() => {
threadLocal.Value = 5;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, threadLocal.Value);
}).Start();
new Thread(() => {
threadLocal.Value = 6;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, threadLocal.Value);
}).Start();
Thread.Sleep(1000);
Console.WriteLine("thread id {0} value:{1} END", Thread.CurrentThread.ManagedThreadId, threadLocal.Value);
Console.Read();
输出:
Hello, World!
thread id 1 value:1 START
thread id 7 value:2
thread id 8 value:3
thread id 9 value:4
thread id 10 value:5
thread id 11 value:6
thread id 1 value:1 END
通过一系列线程修改后 threadLocal 的值在 1 号线程始终为 1 ,这也符合我们对 ThreadLocal 预期。
当 ThreadLocal 遇到 await
上面的示例我们使用的是 new Thread 的办法进行多线程操作,现在这种做法已经很少见了。我们现在更多的时候会使用 async/await Task 来帮我们做多线程异步操作。这个时候我们的 ThreadLocal 就会力不从心了,让我们改造一下代码:我们把 new Thread 全部改造成 Task.Run 来执行修改变量的操作。
ThreadLocal<int> threadLocal = new ThreadLocal<int>();
threadLocal.Value = 1;
Console.WriteLine("thread id {0} value:{1} START", Thread.CurrentThread.ManagedThreadId, threadLocal.Value);
await Task.Run(() => {
threadLocal.Value = 2;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, threadLocal.Value);
});
await Task.Run(() => {
threadLocal.Value = 3;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, threadLocal.Value);
});
await Task.Run(() => {
threadLocal.Value = 4;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, threadLocal.Value);
});
await Task.Run(() => {
threadLocal.Value = 5;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, threadLocal.Value);
});
await Task.Run(() => {
threadLocal.Value = 6;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, threadLocal.Value);
});
Console.WriteLine("thread id {0} value:{1} END", Thread.CurrentThread.ManagedThreadId, threadLocal.Value);
Console.Read();
输出:
Hello, World!
thread id 1 value:1 START
thread id 7 value:2
thread id 8 value:3
thread id 10 value:4
thread id 11 value:5
thread id 12 value:6
thread id 11 value:5 END
通过输出我们可以看到 START 跟 END 的输出已经不一样了。至于为什么,如果理解 Task 的原理,其实也很好理解。简单来说,Task 的异步是一种基于状态机实现方式,编译器碰到 await 会把代码编译成一个代码块,表示一种状态。Task 的任务调度器会调度空闲线程去处理每一个状态。当一个状态完成后,调度器调度一个空闲线程去处理下一个任务,这样一个接一个处理。这里最大的困扰其实是主观上的当前线程(打印 START 跟 END 的线程)已经不是同一个了,打印 START 的是 1 号线程,打印 END 的是 11 号线程,那么 ThreadLocal 自然不适合这种场景了。
AsyncLocal
上面我们已经知道 ThreadLocal 已经不适合在新的 TPL 模型下的多线程变量隔离。那么我们该如何进行应对呢?答案就是 AsyncLocal 。
让我们改造下代码,把 Threadlocal 替换成 AsyncLocal ,其它不变,运行一下代码。
AsyncLocal<int> asyncLocal = new AsyncLocal<int>();
asyncLocal.Value = 1;
Console.WriteLine("thread id {0} value:{1} START", Thread.CurrentThread.ManagedThreadId, asyncLocal.Value);
await Task.Run(() => {
asyncLocal.Value = 2;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, asyncLocal.Value);
});
await Task.Run(() => {
asyncLocal.Value = 3;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, asyncLocal.Value);
});
await Task.Run(() => {
asyncLocal.Value = 4;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, asyncLocal.Value);
});
await Task.Run(() => {
asyncLocal.Value = 5;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, asyncLocal.Value);
});
await Task.Run(() => {
asyncLocal.Value = 6;
Console.WriteLine("thread id {0} value:{1}", Thread.CurrentThread.ManagedThreadId, asyncLocal.Value);
});
Console.WriteLine("thread id {0} value:{1} END", Thread.CurrentThread.ManagedThreadId, asyncLocal.Value);
Console.Read();
输出:
thread id 1 value:1 START
thread id 6 value:2
thread id 7 value:3
thread id 8 value:4
thread id 11 value:5
thread id 7 value:6
thread id 7 value:1 END
结果如我们所愿, START 跟 END 的值是一致的。我们可以看到虽然线程发生了切换,但是值被很好的保留在了当前流程下。
让我们使用另外一个代码实例来演示下 AsyncLocal 的特性。上面的代码演示的是一个 Task 接一个 Task 的场景,一下我们演示下 Task 嵌套 Task 的场景。
AsyncLocal<int> asyncLocal = new AsyncLocal<int>();
//block 1
asyncLocal.Value = 1;
Console.WriteLine("thread id {0} value:{1} START", Thread.CurrentThread.ManagedThreadId, asyncLocal.Value);
await Task.Run(async () =>
{
//block 2
asyncLocal.Value = 2;
Console.WriteLine("thread id {0} value:{1} ", Thread.CurrentThread.ManagedThreadId, asyncLocal.Value);
await Task.Run(() => {
//block 3
asyncLocal.Value = 3;
Console.WriteLine("thread id {0} value:{1} ", Thread.CurrentThread.ManagedThreadId, asyncLocal.Value);
});
Console.WriteLine("thread id {0} value:{1} ", Thread.CurrentThread.ManagedThreadId, asyncLocal.Value);
});
Console.WriteLine("thread id {0} value:{1} END", Thread.CurrentThread.ManagedThreadId, asyncLocal.Value);
Console.Read();
输出
thread id 1 value:1 START
thread id 6 value:2
thread id 7 value:3
thread id 7 value:2
thread id 7 value:1 END
跟你预期的结果一致吗? 结果为:1 2 3 2 1 。 AsyncLocal 的变量值会被隔离在每个 Task 流程内,就算嵌套,子流程对变量的修改也不会影响到父流程的值。
AsyncLocal 实用
AsyncLocal 的特性说的差不多了。那么 AsyncLocal 到底该使用在什么场景呢?
当我们重构代码的时候如果需要把一个上下文参数传递进去,最傻瓜的办法就是在所有的调用类的构造函数上加入这个参数,或者在所有的方法调用上加入这个参数。但是这种办法是破坏性比较大的,因为函数签名被破坏意味着接口(广义上)约束被破坏了。这个时候我们可以通过 AsyncLocal 把上下文传递进去。
定义一个 MyContext 类:
public class MyContext : IDisposable
{
static AsyncLocal<MyContext> _scope = new AsyncLocal<MyContext>();
public MyContext(object val)
{
Value = val;
_scope.Value = this;
}
public object Value { get;}
public static MyContext? Current
{
get
{
return _scope.Value;
}
}
public void Dispose()
{
if (Value != null)
{
(Value as IDisposable)?.Dispose();
}
}
}
假设我们已经有了 Func1 方法,现在在不破坏任何接口约束的情况下可以把 MyContext 直接通过静态变量 MyContext.Current 获取到。
void Func1()
{
Console.WriteLine(MyContext.Current?.Value);
}
using (var ctx = new MyContext("context 1"))
{
Func1();
}
using (var ctx = new MyContext("context 2"))
{
Func1();
}
using (var ctx = new MyContext("context 3"))
{
await Task.Run(Func1);
await Task.Run(Func1);
await Task.Run(Func1);
}
另外一个实现其实是大家非常常见的 HttpContextAccessor 。ASP.NET Core 下我们获取 HttpContext 会通过 HttpContextAccessor 获取。HttpContextAccessor 通常被注册为单例。大家有没有想过为啥单例的 HttpContextAccessor.HttpContext 变量不会被多线程或者异步方法打乱?原因也就在于 AsyncLocal 。源码在这 HttpContextAccessor ,并不复杂大家可以看看。
关注我的公众号一起玩转技术

从 ThreadLocal 到 AsyncLocal的更多相关文章
- AsyncLocal的运作机制和陷阱
这是今天帮柠檬分析一个AsyncLocal相关的问题时发现的. 试想这个代码输出的值是多少? using System; using System.Threading; using System.Th ...
- 浅谈AsyncLocal,我们应该知道的那些事儿
前言 最近查看有关框架源码,发现AsyncLocal这玩意水还挺深,于是花了一点功夫去研究,同时对比ThreadLocal说明二者区别以及在何时场景下使用AsyncLocal或ThreadLocal. ...
- 谈谈.NET Core下如何利用 AsyncLocal 实现共享变量
前言 在Web 应用程序中,我们经常会遇到这样的场景,如用户信息,租户信息本次的请求过程中都是固定的,我们希望是这种信息在本次请求内,一次赋值,到处使用.本文就来探讨一下,如何在.NET Core 下 ...
- c#中多线程间的同步
目录 一.引入 二.Lock 三.Monitor 四.Interlocked 五.Semaphore 六.Event 七.Barrier 八.ReaderWriterLockSlim 九.Mutex ...
- [C#].Net Core 获取 HttpContext.Current 以及 AsyncLocal 与 ThreadLocal
在 DotNetCore 当中不再像 MVC5 那样可以通过 HttpContext.Current 来获取到当前请求的上下文. 不过微软提供了一个 IHttpContextAccessor 来让我们 ...
- .NET Core 获取 HttpContext.Current 以及 AsyncLocal 与 ThreadLocal
在 DotNetCore 当中不再像 MVC5 那样可以通过 HttpContext.Current 来获取到当前请求的上下文. 不过微软提供了一个 IHttpContextAccessor 来让我们 ...
- AsyncLocal<T>与ThreadLocal<T>区别研究
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- CallContext,ThreadStatic,AsyncLocal<T>,ThreadLocal<T>,学习笔记
1.CallContext 在当前调用上下文的线程数据槽里存储对象 2.ThreadStatic 是一个特性 3.AsyncLocal<T> 是一个类型,该字段应当为static,保证单例 ...
- AsyncLocal 与 ThreadLocal ThreadStatic特性简介
AsyncLocal 与 ThreadLocal [.NET深呼吸]基于异步上下文的本地变量(AsyncLocal) https://www.cnblogs.com/tcjiaan/p/5007737 ...
随机推荐
- IdentityServer4[2]:启动一个新的IdentityServer项目
启动一个新的IdentityServer项目 从头开始,从基础开始,然后变得更加复杂,循序渐进的学习 工具:VS2017 15.9.8 .Net Core2.2 基本过程 创建一个新的ASP.NET ...
- Cookbook:pandas的学习之路——10 Minutes to pandas
按照pandas官网上10 Minutes to pandas的快速练习: 一 .对象创建: 导入练习所需要的工具包: 通过列表中的值创建序列Series,pandas在创建序列的同时会默认为列表中值 ...
- 最详细STL(一)vector
vector的本质还是数组,但是可以动态的增加和减少数组的容量(当数组空间内存不足时,都会执行: 分配新空间-复制元素-释放原空间),首先先讲讲vector和数组的具体区别 一.vector和数组的区 ...
- docker - compose 部署 Nginx
主要介绍 docker 中 Nginx 的部署及项目目录挂载券的方法.docker 中部署一个服务,有三种方法,分别是 docker run.Dockerfile.docker-compose . 下 ...
- iOS Swift结构体与类的方法调度
前言 hello,小伙伴们:在忙碌中闲暇之余给大家聊聊swift的知识点,今天给大家带来的是swift中结构体与类的方法调度详细区别,希望对你有所帮助,好了废话不用多说,接下来步入主题! 1.普通方法 ...
- dubbo服务架构介绍
Provider: 暴露服务的服务提供方. Consumer: 调用远程服务的服务消费方. Registry: 服务注册与发现的注册中心. Monitor: 统计服务的调用次数和调用时间的监控中心. ...
- vj-E题Ehab and Path-etic MEXs
Ehab and Path-etic MEXs 题意:给定一棵树所有的边,对所有的边进行标号,询问任意两点Mex的最大值最小的的标号方案(输出任何一种). Mex(u,v)表示从u到v的简单路径中没有 ...
- [软工顶级理解组] Alpha阶段测试报告
[软工顶级理解组] Alpha阶段测试报告 在测试过程中发现了多少Bug? 测试阶段发现并已修复的bug: 尚且存在,但是难以解决或者不影响使用的bug: 计算重修课程的时候,如果重修课程的课程号和原 ...
- [Beta]the Agiles Scrum Meeting 4
会议时间:2020.5.15 21:00 1.每个人的工作 今天已完成的工作 成员 已完成的工作 yjy 增加教学计划面板,修复bug tq 实现查看.删除测试点功能 wjx 实现批量创建结对项目功能 ...
- [软工作业]-软件案例分析-CSDN
[软工作业]-软件案例分析-CSDN(app) 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业-软件案例分析 我在这个课程的目标是 ...