第08章 MySQL聚合函数
第08章 MySQL聚合函数
我们上一章讲到了 SQL 单行函数。实际上 SQL 函数还有一类,叫做聚合(或聚集、分组)函数,它是对一组数据进行汇总的函数,输入的是一组数据的集合,输出的是单个值。
1. 聚合函数介绍
- 什么是聚合函数
聚合函数作用于一组数据,并对一组数据返回一个值。

聚合函数类型
- AVG()
- SUM()
- MAX()
- MIN()
- **COUNT() **
聚合函数语法

- 聚合函数不能嵌套调用。比如不能出现类似“AVG(SUM(字段名称))”形式的调用。
1.1 AVG和SUM函数
可以对数值型数据使用AVG 和 SUM 函数。
SELECT AVG(salary), MAX(salary),MIN(salary), SUM(salary)
FROM employees
WHERE job_id LIKE '%REP%';

1.2 MIN和MAX函数
可以对任意数据类型的数据使用 MIN 和 MAX 函数。
SELECT MIN(hire_date), MAX(hire_date)
FROM employees;

1.3 COUNT函数
- COUNT(*)返回表中记录总数,适用于任意数据类型。
SELECT COUNT(*)
FROM employees
WHERE department_id = 50;

- COUNT(expr) 返回expr不为空的记录总数。
SELECT COUNT(commission_pct)
FROM employees
WHERE department_id = 50;

问题:用count(*),count(1),count(列名)谁好呢?
其实,对于MyISAM引擎的表是没有区别的。这种引擎内部有一计数器在维护着行数。
Innodb引擎的表用count(*),count(1)直接读行数,复杂度是O(n),因为innodb真的要去数一遍。但好于具体的count(列名)。
问题:能不能使用count(列名)替换count(*)?
不要使用 count(列名)来替代
count(*),count(*)是 SQL92 定义的标准统计行数的语法,跟数据库无关,跟 NULL 和非 NULL 无关。说明:count(*)会统计值为 NULL 的行,而 count(列名)不会统计此列为 NULL 值的行。
2. GROUP BY
2.1 基本使用

可以使用GROUP BY子句将表中的数据分成若干组
SELECT column, group_function(column)
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];
明确:WHERE一定放在FROM后面
在SELECT列表中所有未包含在组函数中的列都应该包含在 GROUP BY子句中
SELECT department_id, AVG(salary)
FROM employees
GROUP BY department_id ;


包含在 GROUP BY 子句中的列不必包含在SELECT 列表中
SELECT AVG(salary)
FROM employees
GROUP BY department_id ;

2.2 使用多个列分组

SELECT department_id dept_id, job_id, SUM(salary)
FROM employees
GROUP BY department_id, job_id ;


2.3 GROUP BY中使用WITH ROLLUP
使用WITH ROLLUP关键字之后,在所有查询出的分组记录之后增加一条记录,该记录计算查询出的所有记录的总和,即统计记录数量。
SELECT department_id,AVG(salary)
FROM employees
WHERE department_id > 80
GROUP BY department_id WITH ROLLUP;
注意:
当使用ROLLUP时,不能同时使用ORDER BY子句进行结果排序,即ROLLUP和ORDER BY是互相排斥的。
3. HAVING
3.1 基本使用

过滤分组:HAVING子句
- 行已经被分组。
- 使用了聚合函数。
- 满足HAVING 子句中条件的分组将被显示。
- HAVING 不能单独使用,必须要跟 GROUP BY 一起使用。

SELECT department_id, MAX(salary)
FROM employees
GROUP BY department_id
HAVING MAX(salary)>10000 ;

- 非法使用聚合函数 : 不能在 WHERE 子句中使用聚合函数。如下:
SELECT department_id, AVG(salary)
FROM employees
WHERE AVG(salary) > 8000
GROUP BY department_id;

3.2 WHERE和HAVING的对比
区别1:WHERE 可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数作为筛选条件;HAVING 必须要与 GROUP BY 配合使用,可以把分组计算的函数和分组字段作为筛选条件。
这决定了,在需要对数据进行分组统计的时候,HAVING 可以完成 WHERE 不能完成的任务。这是因为,在查询语法结构中,WHERE 在 GROUP BY 之前,所以无法对分组结果进行筛选。HAVING 在 GROUP BY 之后,可以使用分组字段和分组中的计算函数,对分组的结果集进行筛选,这个功能是 WHERE 无法完成的。另外,WHERE排除的记录不再包括在分组中。
区别2:如果需要通过连接从关联表中获取需要的数据,WHERE 是先筛选后连接,而 HAVING 是先连接后筛选。 这一点,就决定了在关联查询中,WHERE 比 HAVING 更高效。因为 WHERE 可以先筛选,用一个筛选后的较小数据集和关联表进行连接,这样占用的资源比较少,执行效率也比较高。HAVING 则需要先把结果集准备好,也就是用未被筛选的数据集进行关联,然后对这个大的数据集进行筛选,这样占用的资源就比较多,执行效率也较低。
小结如下:
| 优点 | 缺点 | |
|---|---|---|
| WHERE | 先筛选数据再关联,执行效率高 | 不能使用分组中的计算函数进行筛选 |
| HAVING | 可以使用分组中的计算函数 | 在最后的结果集中进行筛选,执行效率较低 |
开发中的选择:
WHERE 和 HAVING 也不是互相排斥的,我们可以在一个查询里面同时使用 WHERE 和 HAVING。包含分组统计函数的条件用 HAVING,普通条件用 WHERE。这样,我们就既利用了 WHERE 条件的高效快速,又发挥了 HAVING 可以使用包含分组统计函数的查询条件的优点。当数据量特别大的时候,运行效率会有很大的差别。
4. SELECT的执行过程
4.1 查询的结构
#方式1:
SELECT ...,....,...
FROM ...,...,....
WHERE 多表的连接条件
AND 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...
#方式2:
SELECT ...,....,...
FROM ... JOIN ...
ON 多表的连接条件
JOIN ...
ON ...
WHERE 不包含组函数的过滤条件
AND/OR 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...
#其中:
#(1)from:从哪些表中筛选
#(2)on:关联多表查询时,去除笛卡尔积
#(3)where:从表中筛选的条件
#(4)group by:分组依据
#(5)having:在统计结果中再次筛选
#(6)order by:排序
#(7)limit:分页
4.2 SELECT执行顺序
你需要记住 SELECT 查询时的两个顺序:
1. 关键字的顺序是不能颠倒的:
SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY ... LIMIT...
2.SELECT 语句的执行顺序(在 MySQL 和 Oracle 中,SELECT 执行顺序基本相同):
FROM -> WHERE -> GROUP BY -> HAVING -> SELECT 的字段 -> DISTINCT -> ORDER BY -> LIMIT

比如你写了一个 SQL 语句,那么它的关键字顺序和执行顺序是下面这样的:
SELECT DISTINCT player_id, player_name, count(*) as num # 顺序 5
FROM player JOIN team ON player.team_id = team.team_id # 顺序 1
WHERE height > 1.80 # 顺序 2
GROUP BY player.team_id # 顺序 3
HAVING num > 2 # 顺序 4
ORDER BY num DESC # 顺序 6
LIMIT 2 # 顺序 7
在 SELECT 语句执行这些步骤的时候,每个步骤都会产生一个虚拟表,然后将这个虚拟表传入下一个步骤中作为输入。需要注意的是,这些步骤隐含在 SQL 的执行过程中,对于我们来说是不可见的。
4.3 SQL 的执行原理
SELECT 是先执行 FROM 这一步的。在这个阶段,如果是多张表联查,还会经历下面的几个步骤:
- 首先先通过 CROSS JOIN 求笛卡尔积,相当于得到虚拟表 vt(virtual table)1-1;
- 通过 ON 进行筛选,在虚拟表 vt1-1 的基础上进行筛选,得到虚拟表 vt1-2;
- 添加外部行。如果我们使用的是左连接、右链接或者全连接,就会涉及到外部行,也就是在虚拟表 vt1-2 的基础上增加外部行,得到虚拟表 vt1-3。
当然如果我们操作的是两张以上的表,还会重复上面的步骤,直到所有表都被处理完为止。这个过程得到是我们的原始数据。
当我们拿到了查询数据表的原始数据,也就是最终的虚拟表 vt1,就可以在此基础上再进行 WHERE 阶段。在这个阶段中,会根据 vt1 表的结果进行筛选过滤,得到虚拟表 vt2。
然后进入第三步和第四步,也就是 GROUP 和 HAVING 阶段。在这个阶段中,实际上是在虚拟表 vt2 的基础上进行分组和分组过滤,得到中间的虚拟表 vt3 和 vt4。
当我们完成了条件筛选部分之后,就可以筛选表中提取的字段,也就是进入到 SELECT 和 DISTINCT 阶段。
首先在 SELECT 阶段会提取想要的字段,然后在 DISTINCT 阶段过滤掉重复的行,分别得到中间的虚拟表 vt5-1 和 vt5-2。
当我们提取了想要的字段数据之后,就可以按照指定的字段进行排序,也就是 ORDER BY 阶段,得到虚拟表 vt6。
最后在 vt6 的基础上,取出指定行的记录,也就是 LIMIT 阶段,得到最终的结果,对应的是虚拟表 vt7。
当然我们在写 SELECT 语句的时候,不一定存在所有的关键字,相应的阶段就会省略。
同时因为 SQL 是一门类似英语的结构化查询语言,所以我们在写 SELECT 语句的时候,还要注意相应的关键字顺序,所谓底层运行的原理,就是我们刚才讲到的执行顺序。
第08章 MySQL聚合函数的更多相关文章
- MySQL聚合函数、控制流程函数(含navicat软件的介绍)
MySQL聚合函数.控制流程函数(含navicat软件的介绍) 一.navicat的引入:(第三方可视化的客户端,方便MySQL数据库的管理和维护) NavicatTM是一套快速.可靠并价格相宜的数据 ...
- MySQL数据库学习笔记(四)----MySQL聚合函数、控制流程函数(含navicat软件的介绍)
[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...
- Mysql 聚合函数返回NULL
[1]聚合函数返回NULL 当where条件不满足时,聚合函数sum().avg()的返回值为NULL. (1)源数据表 (2)如下SQL语句 SELECT sClass, COUNT(*) AS t ...
- MySQL 聚合函数 控制流程函数
常用的聚合函数 1. AVG() 求平均值 mysql> AVG([DISTINCT] expr) -- 返回 expr 的平均值 mysql> select AVG(age) from ...
- MySQL聚合函数、控制流程函数
[正文] 一.navicat的引入:(第三方可视化的客户端,方便MySQL数据库的管理和维护) NavicatTM是一套快速.可靠并价格相宜的数据库管理工具,专为简化数据库的管理及降低系统管理成本而设 ...
- Mysql聚合函数count(*) 的性能分析
你首先要明确的是,在不同的 MySQL 引擎中,count(*) 有不同的实现方式. MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高: 而 ...
- MySQL聚合函数在计算时,不会自动匹配与之相对应的数据
学习mysql过程中遇到了一个困惑,纠结了我半天时间,刚刚又重新复习了一下,终于知道问题所在 以下是一个需求: 取得平均薪水最高的部门的部门编号 代码如下: select deptno, avg(sa ...
- MySQL 聚合函数(三)MySQL对GROUP BY的处理
原文来自MySQL 5.7 官方手册:12.20.3 MySQL Handling of GROUP BY SQL-92和更早版本不允许SELECT列表,HAVING条件或ORDER BY列表引用未在 ...
- MySQL 聚合函数(一)聚合(组合)函数概述
MySQL版本:5.7+ 本节介绍对值的集合进行操作的组合(聚合)函数.翻译自:Aggregate (GROUP BY) Function Descriptions 一.MySQL 5.7中的聚合函数 ...
随机推荐
- 洛谷4219 BJOI2014大融合(LCT维护子树信息)
QWQ 这个题目是LCT维护子树信息的经典应用 根据题目信息来看,对于一个这条边的两个端点各自的\(size\)乘起来,不过这个应该算呢? 我们可以考虑在LCT上多维护一个\(xv[i]\)表示\(i ...
- MySQL ENGINES 引擎
引擎 存储引擎是数据库底层软件组织. 数据库管理系统(DBMS)使用数据引擎进行创建.查询.更新和删除数据. 不同的存储引擎提供不同的存储机制.索引技巧.锁定水平等功能. MySQL的核心就是存储引擎 ...
- Python中is与==区别
1.在Python中,id是什么?id是内存地址,那就有人问了,什么是内存地址呢? 你只要创建一个数据(对象)那么都会在内存中开辟一个空间,将这个数据临时加在到内存中,那么这个空间是有一个唯一标识的, ...
- Golang通脉之接口
接口(interface)定义了一个对象的行为规范,只定义规范不实现,由具体的对象来实现规范的细节. 接口类型 在Go语言中接口(interface)是一种类型,一种抽象的类型. interface是 ...
- kettle使用
Kettle的安装及简单使用 目录 Kettle的安装及简单使用 一.kettle概述 二.kettle安装部署和使用 Windows下安装 案例1:MySQL to MySQL 案例2:使用作业执行 ...
- (课内)信安数基RSA-基础&&解密加速
RSA基本实现 首先获得N比特的伪随机数:使用Random库中内容. randint(n,m) 表示生成一个在n和m之间的随机数, **表示乘幂. getPrime找素数,or 1运算是一种优化:如果 ...
- [no code][scrum meeting] Alpha 7
项目 内容 会议时间 2020-04-13 会议主题 OCR技术细节分析 会议时长 30min 参会人员 PM+OCR组成员 $( "#cnblogs_post_body" ).c ...
- 无网络下,配置yum本地源
1. 新建一个没有iso镜像文件的虚拟机: 2. 本地上传一个镜像文件(CentOS7的镜像),到虚拟机已创建的目录: 例如:上传一个镜像文件CentOS-7-x86_64-Everything-17 ...
- shell脚本自学笔记
一. 什么是Shell脚本 shell脚本并不能作为正式的编程语言,因为它是在linux的shell中运行的,所以称为shell脚本.事实上,shell脚本就是一些命令的集合. 假如完成某个需求需要一 ...
- PriorityQueue(优先队列)
PriorityQueue 翻译过来就是优先队列,本质是一个堆, 默认情况下堆顶每次都保留最小值,每插入一个元素,仍动态维护堆顶为最小值. PriorityQueue 一个基于优先级的无界优先级队列. ...