[loj2478]林克卡特树
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 300005
4 #define oo 1e12
5 #define ll long long
6 #define pli pair<ll,int>
7 #define fi first
8 #define se second
9 #define mx(k) max(f[k][0],max(f[k][1],f[k][2]))
10 int E,n,m,k,x,y,z,head[N];
11 pli o,f[N][3];
12 struct ji{
13 int nex,to,len;
14 }edge[N<<1];
15 pli add(pli x,pli y){
16 return make_pair(x.fi+y.fi,x.se+y.se);
17 }
18 void add(int x,int y,int z){
19 edge[E].nex=head[x];
20 edge[E].to=y;
21 edge[E].len=z;
22 head[x]=E++;
23 }
24 void dfs(int k,int fa,ll v){
25 f[k][0]=make_pair(0,0);
26 f[k][1]=f[k][2]=make_pair(-v,1);
27 for(int i=head[k];i!=-1;i=edge[i].nex)
28 if (edge[i].to!=fa){
29 int u=edge[i].to;
30 dfs(u,k,v);
31 memcpy(f[0],f[k],sizeof(f[0]));
32 for(int j=0;j<3;j++)f[k][j]=add(f[k][j],mx(u));
33 f[k][1]=max(f[k][1],add(add(f[0][0],f[u][1]),make_pair(edge[i].len,0)));
34 f[k][2]=max(f[k][2],add(add(f[0][1],f[u][1]),make_pair(edge[i].len+v,-1)));
35 }
36 }
37 pli pd(ll k){
38 dfs(1,0,k);
39 return mx(1);
40 }
41 int main(){
42 scanf("%d%d",&n,&m);
43 m++;
44 memset(head,-1,sizeof(head));
45 for(int i=1;i<n;i++){
46 scanf("%d%d%d",&x,&y,&z);
47 add(x,y,z);
48 add(y,x,z);
49 }
50 ll l=-oo,r=oo;
51 while (l<r){
52 ll mid=(l+r+1>>1);
53 if (pd(mid).se>=m)l=mid;
54 else r=mid-1;
55 }
56 o=pd(l-1);
57 printf("%lld",o.fi+o.se*(l-1)+l*(m-o.se));
58 }
[loj2478]林克卡特树的更多相关文章
- [八省联考2018]林克卡特树lct——WQS二分
[八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...
- [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树
[BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树 题意 给定一个 \(n\) 个点边带权的无根树, 要求切断其中恰好 \(k\) 条边再连 \(k\) 条边权为 \(0\) ...
- 【BZOJ5252】林克卡特树(动态规划,凸优化)
[BZOJ5252]林克卡特树(动态规划,凸优化) 题面 BZOJ(交不了) 洛谷 题解 这个东西显然是随着断开的越来越多,收益增长速度渐渐放慢. 所以可以凸优化. 考虑一个和\(k\)相关的\(dp ...
- LuoguP4383 [八省联考2018]林克卡特树lct
LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...
- P4383 [八省联考2018]林克卡特树 树形dp Wqs二分
LINK:林克卡特树 作为树形dp 这道题已经属于不容易的级别了. 套上了Wqs二分 (反而更简单了 大雾 容易想到还是对树进行联通情况的dp 然后最后结果总和为各个联通块内的直径. \(f_{i,j ...
- luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分)
luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分) Luogu 题解时间 $ k $ 条边权为 $ 0 $ 的边. 是的,边权为零. 转化成选正好 $ k+1 $ 条链. $ ...
- 【HEOI 2018】Day2 T2 林克卡特树
题目大意: 给一个n个节点的树,然后将其分成k+1个联通块,再在每个联通块取一条路径,将其连接起来,求连接起来的路径最大权值. 题解: 考场只会20分,还都打挂了…… 60分的做法其实并不难,nk D ...
- bzoj5252 [2018多省省队联测]林克卡特树
斜率优化树形dp?? 我们先将问题转化成在树上选K+1条互不相交路径,使其权值和最大. 然后我们考虑60分的dp,直接维护每个点子树内选了几条路径,然后该点和0/1/2条路径相连 然后我们会发现最后的 ...
- BZOJ5252 八省联考2018林克卡特树(动态规划+wqs二分)
假设已经linkcut完了树,答案显然是树的直径.那么考虑这条直径在原树中是怎样的.容易想到其是由原树中恰好k+1条点不相交的链(包括单个点)拼接而成的.因为这样的链显然可以通过linkcut拼接起来 ...
随机推荐
- 开启Nginx代理HTTPS功能
1.首先查看是否已经安装SSL openssl version -a 2.生成SSL证书 在nginx目录下创建ssl文件夹 cd /etc/pki mkdir nginx cd nginx 生成20 ...
- 题解 [BJOI2019]奥术神杖
题目传送门 题目大意 给出一个残缺的字符串,每个位置都 \(\in[0,9]\).有 \(m\) 中贡献,即 \(s,k\),表示该字符串中没出现一次 \(s\),贡献便乘上 \(k\).最后对贡献求 ...
- Fastjson中getJSONObject()与getJSONArray()的使用
测试JSON串: { "package": { "List1": { "errorCode": "0", "e ...
- 在 Windows 10 上安装 Coq 库 Mathematical Components
初学 Coq 时看的是 Mathematical Components 这本书,它自带了一个 Coq 的库,这是它的安装教程 这个库的安装要用到 OCaml Package Manager (OPAM ...
- spring cloud中使用hystrix实现回退
在微服务架构中,我们的服务被拆分成多个微服务,每个微服务完成自己的职责,微服务之间通过rpc或http进行调用.这个时候我们就要确保我们的服务高可用,但谁也说不准我们的服务能永远快速的提供服务.假如现 ...
- Noip模拟49 2021.9.7
T1 reverse 又一道板子打假的挂分题,直接挂到倒二.. 考场上思路神奇,居然想到用$bfs$建边然后跑最短路, 其实当时也想到了直接$bfs$,但是不知道为啥觉得$dij$屌就没直接打$bfs ...
- GPIO原理与配置(跑马灯,蜂鸣器,按键)
一.STM32 GPIO固件库函数配置方法 1. 根据需要在项目中删掉一些不用的固件库文件,保留有用的固件库文件 2. 在stm32f10x_conf.h中注释掉这些不用的头文件 3. STM32的I ...
- linux下文件后面带~
之前发现有时候在命令行ls会看到一些文件后面带有-,而这些文件的名字和我们文件夹中的某些文件是一模一样的文件,在文件夹中没发现就很大胆地删掉了也没是,一直没管,觉得是什么临时复制的文件或者隐藏文件.今 ...
- TypeError: 'encoding' is an invalid keyword argument for this function 解决Python 2.7
在python2.7中这样调用代码 open('file/name.txt','r',encoding= 'utf-8').read() 会出现 TypeError: 'encoding' is an ...
- java性能优化常用工具jmap、jstack
jmap:java内存映像工具 jmap用于生成堆转储快照,比较常用的option包括-heap,-histo,-dump [root@localhost script]# jmap -h Usage ...