原题等价于选择恰好$k+1$条不相交(无公共点)的路径使得边权和最大
证明:对于原题中的最优解,一定包含了k条0边权的边(否则可以将未使用的边删掉,然后将这条路径的末尾与不在同一个连通块内的点连边),那么选择这k条0边权的边所划分的$k+1$条路径即可;对于这$k+1$条路径,将每一条路径首尾连0边权的边,由于这些0边权的边和选择的边无法构成环,因此一定可以删除k条为选择的非0边使其变成一棵树,即原题中的操作
然后令$f(k)$表示选择了恰好k条路径的答案,那么有对于$\forall 1\le i<n$,都有$2f(i)\ge f(i-1)+f(i+1)$,即$f(i)-f(i-1)\ge f(i+1)-f(i)$
证明:建立一张费用流的图:S->i(1,0);i->i'(1,0);i'->T(1,0);i'->j(1,v(i,j))。容易发现$f(x)= 流量为x的最大费用$,由于费用流存在凸性,所以f也存在凸性
根据凸性二分即可,即二分$f(i)-f(i-1)\ge k$,考虑判定:将每条路径权值减去k并选择任意条路径使得权值和最大,那么最后即求出了$f(i)-ki$(特殊情况:$f(k+1)-f(k)=……=f(k+i)-f(k+i-1)$,那么只可以找到$f(k+i)$和$f(k)$,根据等式求出$f(k+1)$即可)
具体的树形dp:用$f[i][j=0/1/2]$表示以i为根的子树选择的端点包含i的边数j,转移分类讨论即可(注意:根据二分的过程,我们要选择尽量多的路径,因此还要记录对应的路径数量,可以用结构体来转移) 
 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 300005
4 #define oo 1e12
5 #define ll long long
6 #define pli pair<ll,int>
7 #define fi first
8 #define se second
9 #define mx(k) max(f[k][0],max(f[k][1],f[k][2]))
10 int E,n,m,k,x,y,z,head[N];
11 pli o,f[N][3];
12 struct ji{
13 int nex,to,len;
14 }edge[N<<1];
15 pli add(pli x,pli y){
16 return make_pair(x.fi+y.fi,x.se+y.se);
17 }
18 void add(int x,int y,int z){
19 edge[E].nex=head[x];
20 edge[E].to=y;
21 edge[E].len=z;
22 head[x]=E++;
23 }
24 void dfs(int k,int fa,ll v){
25 f[k][0]=make_pair(0,0);
26 f[k][1]=f[k][2]=make_pair(-v,1);
27 for(int i=head[k];i!=-1;i=edge[i].nex)
28 if (edge[i].to!=fa){
29 int u=edge[i].to;
30 dfs(u,k,v);
31 memcpy(f[0],f[k],sizeof(f[0]));
32 for(int j=0;j<3;j++)f[k][j]=add(f[k][j],mx(u));
33 f[k][1]=max(f[k][1],add(add(f[0][0],f[u][1]),make_pair(edge[i].len,0)));
34 f[k][2]=max(f[k][2],add(add(f[0][1],f[u][1]),make_pair(edge[i].len+v,-1)));
35 }
36 }
37 pli pd(ll k){
38 dfs(1,0,k);
39 return mx(1);
40 }
41 int main(){
42 scanf("%d%d",&n,&m);
43 m++;
44 memset(head,-1,sizeof(head));
45 for(int i=1;i<n;i++){
46 scanf("%d%d%d",&x,&y,&z);
47 add(x,y,z);
48 add(y,x,z);
49 }
50 ll l=-oo,r=oo;
51 while (l<r){
52 ll mid=(l+r+1>>1);
53 if (pd(mid).se>=m)l=mid;
54 else r=mid-1;
55 }
56 o=pd(l-1);
57 printf("%lld",o.fi+o.se*(l-1)+l*(m-o.se));
58 }

[loj2478]林克卡特树的更多相关文章

  1. [八省联考2018]林克卡特树lct——WQS二分

    [八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...

  2. [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树

    [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树 题意 给定一个 \(n\) 个点边带权的无根树, 要求切断其中恰好 \(k\) 条边再连 \(k\) 条边权为 \(0\) ...

  3. 【BZOJ5252】林克卡特树(动态规划,凸优化)

    [BZOJ5252]林克卡特树(动态规划,凸优化) 题面 BZOJ(交不了) 洛谷 题解 这个东西显然是随着断开的越来越多,收益增长速度渐渐放慢. 所以可以凸优化. 考虑一个和\(k\)相关的\(dp ...

  4. LuoguP4383 [八省联考2018]林克卡特树lct

    LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...

  5. P4383 [八省联考2018]林克卡特树 树形dp Wqs二分

    LINK:林克卡特树 作为树形dp 这道题已经属于不容易的级别了. 套上了Wqs二分 (反而更简单了 大雾 容易想到还是对树进行联通情况的dp 然后最后结果总和为各个联通块内的直径. \(f_{i,j ...

  6. luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分)

    luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分) Luogu 题解时间 $ k $ 条边权为 $ 0 $ 的边. 是的,边权为零. 转化成选正好 $ k+1 $ 条链. $ ...

  7. 【HEOI 2018】Day2 T2 林克卡特树

    题目大意: 给一个n个节点的树,然后将其分成k+1个联通块,再在每个联通块取一条路径,将其连接起来,求连接起来的路径最大权值. 题解: 考场只会20分,还都打挂了…… 60分的做法其实并不难,nk D ...

  8. bzoj5252 [2018多省省队联测]林克卡特树

    斜率优化树形dp?? 我们先将问题转化成在树上选K+1条互不相交路径,使其权值和最大. 然后我们考虑60分的dp,直接维护每个点子树内选了几条路径,然后该点和0/1/2条路径相连 然后我们会发现最后的 ...

  9. BZOJ5252 八省联考2018林克卡特树(动态规划+wqs二分)

    假设已经linkcut完了树,答案显然是树的直径.那么考虑这条直径在原树中是怎样的.容易想到其是由原树中恰好k+1条点不相交的链(包括单个点)拼接而成的.因为这样的链显然可以通过linkcut拼接起来 ...

随机推荐

  1. 中国唯一入选 Forrester 领导者象限,阿里云 Serverless 全球领先

    3 月 26 日消息,权威咨询机构 Forrester 发布 2021 年第一季度 FaaS 平台评估报告,阿里云函数计算凭借在产品能力.安全性.战略愿景和市场规模等方面的优势脱颖而出,产品能力位列全 ...

  2. 一文学会Java事件机制

    本文同时发布于个人网站 https://ifuyao.com/blog/java-event/ 相信做 Java 开发的朋友,大多都是学习过或至少了解过 Java GUI 编程的,其中有大量的事件和控 ...

  3. VS2017离线安装QT插件出错:未能正确加载VSIX包

    问题现象: 问题已解决,忘记截图了 出现原因:可能是自己离线安装,安装版本与不符合当前VS吧.记得当时下载了一个最新的版本.重新卸载当前插件,再装一个合适版本即可 http://download.qt ...

  4. NOI2018屠龙勇士(扩展CRT + splay(multiset))

    QWQ 一到假期就颓废 哎 今年新鲜出炉的NOI题,QwQ同步赛的时候写的,后来交了一发洛谷,竟然过了 首先 根据题目,我们很容易得到,假设对应每一条龙的剑的攻击力是\(atk\)的话 \[a_i-x ...

  5. 搭建Mac+Java+appium+IOS真机自动化环境

    一.安装前环境准备 1.确保电脑已经有homebrew(包管理器)  下载链接[https://brew.sh/]   2.通过 brew 安装node.js brew install node 安装 ...

  6. Setoolkit部署

    禁止使用本文的知识进行违法犯罪活动!!学习这些内容是为了更好的防范钓鱼网站 详见我的github仓库 Setoolkit : Social-Engineer Toolkit(社会工程学工具包) 其作为 ...

  7. SharkCTF2021 bbpop题记

    一道挺好的web. 做完这一题,感觉php序列化(甚至魔术方法)之类的有点开始玩明白了. 题面很长: 预备知识: PHP类的方法中,有一部分以下划线开头的"魔术方法".不同于普通方 ...

  8. Less-25 preg_replace2

    Less-25: 核心语句: 各种回显也均有. 通过blacklist,我们可以发现,本题屏蔽了and和or. preg_replace函数中正则表达式后面的i是一个修饰符,代表正则匹配时不区分大小写 ...

  9. 让全链路压测变得更简单!Takin2.0重磅来袭!

    自Takin社区版1.0发布两个多月以来,有很多测试同学陆续在各自的工作中运用了起来,其中包括金融.电商.物流.出行服务等行业.这个过程中我们收到了很多同学的反馈建议,同时也了解到很多同学在落地全链路 ...

  10. Ubuntu 用户管理/权限管理

    Ubuntu 用户管理/权限管理 小小记录一下 Ubuntu 下用户/权限管理常用的一些命令 用户管理 组管理 文件权限 给用户添加 sudo 权限 给用户添加 sudo 权限 首先先给出几个文件 / ...