cf13B Letter A(分类+简单计算几何,,)
题意:
给三个线段(每个线段的两个端点的坐标),问这三个线段能否组成字母A。
组成字母A的条件:
1.两个线段有公共端点。
2.这两个线段夹角小于等于90度。
3.第三个线段的两个端点分别在这两个线段上,且各自分割的大小比率不超过4:1
思路:
直接。。。。。
应该开始积累计算几何的代码了,,,,
代码:
struct Point{
double x,y;
};
struct segment{
Point a,b;
}
S[5];
bool samePoint(Point a,Point b){
if(fabs(a.x-b.x)<eps && fabs(a.y-b.y)<eps){
return true;
}
return false;
}
bool PointOnSegment(Point a,segment L){
if((a.x-L.a.x)*(L.b.y-L.a.y)==(a.y-L.a.y)*(L.b.x-L.a.x)
&& min(L.a.x,L.b.x)<=a.x && a.x<=max(L.a.x,L.b.x)
&& min(L.a.y,L.b.y)<=a.y && a.y<=max(L.a.y,L.b.y)){
return true;
}
return false;
}
double rates(Point a,segment L){
double l1=(a.x-L.a.x)*(a.x-L.a.x)+(a.y-L.a.y)*(a.y-L.a.y);
double l2=(a.x-L.b.x)*(a.x-L.b.x)+(a.y-L.b.y)*(a.y-L.b.y);
if(l1<eps || l2<eps){
return 999999.0;
}
if(l1<l2){
return l2/l1;
}
else{
return l1/l2;
}
}
ll Cos(double x1,double y1,double x2,double y2){
if(x1*x2+y1*y2>=0){
return true;
}
return false;
}
bool solve(){
//1 and 2
bool t1=samePoint(S[1].a,S[2].a);
bool t2=samePoint(S[1].a,S[2].b);
bool t3=samePoint(S[1].b,S[2].a);
bool t4=samePoint(S[1].b,S[2].b);
if(t1||t2||t3||t4){
bool flag=false;
if(t1){
double x1,y1,x2,y2;
x1=S[1].b.x-S[1].a.x;
y1=S[1].b.y-S[1].a.y;
x2=S[2].b.x-S[2].a.x;
y2=S[2].b.y-S[2].a.y;
if(Cos(x1,y1,x2,y2)){
flag=true;
}
}
if(t2){
double x1,y1,x2,y2;
x1=S[1].b.x-S[1].a.x;
y1=S[1].b.y-S[1].a.y;
x2=S[2].a.x-S[2].b.x;
y2=S[2].a.y-S[2].b.y;
if(Cos(x1,y1,x2,y2)){
flag=true;
}
}
if(t3){
double x1,y1,x2,y2;
x1=S[1].a.x-S[1].b.x;
y1=S[1].a.y-S[1].b.y;
x2=S[2].b.x-S[2].a.x;
y2=S[2].b.y-S[2].a.y;
if(Cos(x1,y1,x2,y2)){
flag=true;
}
}
if(t4){
double x1,y1,x2,y2;
x1=S[1].a.x-S[1].b.x;
y1=S[1].a.y-S[1].b.y;
x2=S[2].a.x-S[2].b.x;
y2=S[2].a.y-S[2].b.y;
if(Cos(x1,y1,x2,y2)){
flag=true;
}
}
if(flag){
if(PointOnSegment(S[3].a,S[1]) && PointOnSegment(S[3].b,S[2])){
if(rates(S[3].a,S[1])<=16.0 && rates(S[3].b,S[2])<=16.0){
return true;
}
}
if(PointOnSegment(S[3].b,S[1]) && PointOnSegment(S[3].a,S[2])){
if(rates(S[3].b,S[1])<=16.0 && rates(S[3].a,S[2])<=16.0){
return true;
}
}
}
}
//1 and 3
t1=samePoint(S[1].a,S[3].a);
t2=samePoint(S[1].a,S[3].b);
t3=samePoint(S[1].b,S[3].a);
t4=samePoint(S[1].b,S[3].b);
if(t1||t2||t3||t4){
bool flag=false;
if(t1){
double x1,y1,x2,y2;
x1=S[1].b.x-S[1].a.x;
y1=S[1].b.y-S[1].a.y;
x2=S[3].b.x-S[3].a.x;
y2=S[3].b.y-S[3].a.y;
if(Cos(x1,y1,x2,y2)){
flag=true;
}
}
if(t2){
double x1,y1,x2,y2;
x1=S[1].b.x-S[1].a.x;
y1=S[1].b.y-S[1].a.y;
x2=S[3].a.x-S[3].b.x;
y2=S[3].a.y-S[3].b.y;
if(Cos(x1,y1,x2,y2)){
flag=true;
}
}
if(t3){
double x1,y1,x2,y2;
x1=S[1].a.x-S[1].b.x;
y1=S[1].a.y-S[1].b.y;
x2=S[3].b.x-S[3].a.x;
y2=S[3].b.y-S[3].a.y;
if(Cos(x1,y1,x2,y2)){
flag=true;
}
}
if(t4){
double x1,y1,x2,y2;
x1=S[1].a.x-S[1].b.x;
y1=S[1].a.y-S[1].b.y;
x2=S[3].a.x-S[3].b.x;
y2=S[3].a.y-S[3].b.y;
if(Cos(x1,y1,x2,y2)){
flag=true;
}
}
if(flag){
if(PointOnSegment(S[2].a,S[1]) && PointOnSegment(S[2].b,S[3])){
if(rates(S[2].a,S[1])<=16.0 && rates(S[2].b,S[3])<=16.0){
return true;
}
}
if(PointOnSegment(S[2].b,S[1]) && PointOnSegment(S[2].a,S[3])){
if(rates(S[2].b,S[1])<=16.0 && rates(S[2].a,S[3])<=16.0){
return true;
}
}
}
}
//2 and 3
t1=samePoint(S[2].a,S[3].a);
t2=samePoint(S[2].a,S[3].b);
t3=samePoint(S[2].b,S[3].a);
t4=samePoint(S[2].b,S[3].b);
if(t1||t2||t3||t4){
bool flag=false;
if(t1){
double x1,y1,x2,y2;
x1=S[2].b.x-S[2].a.x;
y1=S[2].b.y-S[2].a.y;
x2=S[3].b.x-S[3].a.x;
y2=S[3].b.y-S[3].a.y;
if(Cos(x1,y1,x2,y2)){
flag=true;
}
}
if(t2){
double x1,y1,x2,y2;
x1=S[2].b.x-S[2].a.x;
y1=S[2].b.y-S[2].a.y;
x2=S[3].a.x-S[3].b.x;
y2=S[3].a.y-S[3].b.y;
if(Cos(x1,y1,x2,y2)){
flag=true;
}
}
if(t3){
double x1,y1,x2,y2;
x1=S[2].a.x-S[2].b.x;
y1=S[2].a.y-S[2].b.y;
x2=S[3].b.x-S[3].a.x;
y2=S[3].b.y-S[3].a.y;
if(Cos(x1,y1,x2,y2)){
flag=true;
}
}
if(t4){
double x1,y1,x2,y2;
x1=S[2].a.x-S[2].b.x;
y1=S[2].a.y-S[2].b.y;
x2=S[3].a.x-S[3].b.x;
y2=S[3].a.y-S[3].b.y;
if(Cos(x1,y1,x2,y2)){
flag=true;
}
}
if(flag){
if(PointOnSegment(S[1].a,S[2]) && PointOnSegment(S[1].b,S[3])){
if(rates(S[1].a,S[2])<=16.0 && rates(S[1].b,S[3])<=16.0){
return true;
}
}
if(PointOnSegment(S[1].b,S[2]) && PointOnSegment(S[1].a,S[3])){
if(rates(S[1].b,S[2])<=16.0 && rates(S[1].a,S[3])<=16.0){
return true;
}
}
}
}
return false;
}
int T;
int main(){
cin>>T;
while(T--){
scanf("%lf%lf%lf%lf",&S[1].a.x,&S[1].a.y,&S[1].b.x,&S[1].b.y);
scanf("%lf%lf%lf%lf",&S[2].a.x,&S[2].a.y,&S[2].b.x,&S[2].b.y);
scanf("%lf%lf%lf%lf",&S[3].a.x,&S[3].a.y,&S[3].b.x,&S[3].b.y);
if(solve()){
puts("YES");
}else{
puts("NO");
}
}
return 0;
}
cf13B Letter A(分类+简单计算几何,,)的更多相关文章
- CF13B Letter A
CF13B Letter A 洛谷传送门 题目描述 Little Petya learns how to write. The teacher gave pupils the task to writ ...
- ●POJ 1556 The Doors(简单计算几何+最短路)
●赘述题目 10*10的房间内,有竖着的一些墙(不超过18个).问从点(0,5)到(10,5)的最短路. 按照输入样例,输入的连续5个数,x,y1,y2,y3,y4,表示(x,0--y1),(x,y2 ...
- 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)
Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...
- 2018.07.03 BZOJ 1007: [HNOI2008]水平可见直线(简单计算几何)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln, ...
- python - 实现文本分类[简单使用第三方库完成]
第三方库 pandas sklearn 数据集 来自于达观杯 训练:train.txt 测试:test.txt 概述 TF-IDF 模型提取特征值建立逻辑回归模型 代码 # _*_ coding:ut ...
- HDU2948Geometry Darts(简单计算几何)
题目大意就是说两个人掷飞镖,飞镖在所给定的图形内就记一分,现在给定N个图形(圆.三角形和矩形),问每一次比赛(没人分别掷三次)谁赢. #include <map> #include < ...
- Bzoj4558:分类讨论 计算几何 组合数学
国际惯例的题面: 这题让我爆肝啦......这种计数显然容斥,正好不含任何坏点的我们不会算,但是我们能算至少含零个坏点的,至少含一个坏点的,至少含两个坏点的......所以最终的答案就是(至少含零个坏 ...
- 2018.07.04 POJ 1654 Area(简单计算几何)
Area Time Limit: 1000MS Memory Limit: 10000K Description You are going to compute the area of a spec ...
- 2018.07.04 POJ 3304 Segments(简单计算几何)
Segments Time Limit: 1000MS Memory Limit: 65536K Description Given n segments in the two dimensional ...
随机推荐
- 搭建GIT仓库
- Django学习day07随堂笔记
今日考题 """ 今日考题 1.必知必会N条都有哪些,每个都是干啥使的 2.简述神奇的双下划线查询都有哪些方法,作用是什么 3.针对多对多外键字段的增删改查方法有哪些,各 ...
- js判断苹果端,安卓端
<script type="text/javascript"> var browser = { versions : function() { var u = navi ...
- Navicat连接数据库成功,新建查询时提示错误“Cannot create file ……”
Navicat连接数据库成功,新建查询时提示错误"Cannot create file --" 原因:编辑连接{高级}<设置位置>被修改,该oci.dll不正确 解决方 ...
- 鸿蒙内核源码分析(汇编传参篇) | 如何传递复杂的参数 | 百篇博客分析OpenHarmony源码 | v23.02
百篇博客系列篇.本篇为: v23.xx 鸿蒙内核源码分析(汇编传参篇) | 如何传递复杂的参数 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪 ...
- 多个ssh key 配置多个网址
多个 ssh key 配置多个网站 一.生成ssh key ssh-keygen -t rsa -C "你的邮箱" -f ~/.ssh/id_rsa_one ssh-keygen ...
- P6628-[省选联考 2020 B 卷] 丁香之路【欧拉回路,最小生成树】
正题 题目链接:https://www.luogu.com.cn/problem/P6628 题目大意 给出\(n\)个点的一张完全无向图,\(i\sim j\)的边权是\(|i-j|\). 然后给出 ...
- Monte-carlo-simulation
https://towardsdatascience.com/how-to-use-monte-carlo-simulation-to-help-decision-making-a0a164bc861 ...
- windows terminal+wsl+neovim配置过程杂记
长期记录,草稿 coc依赖于node,直接sudo apt intsll node得到的版本是10.x,无法满足要求, 这篇博客介绍了安装新版node的方法https://www.cnblogs.co ...
- Django整理(二) - 视图和模板的初步使用
Django中的视图 · Django使用视图来编写web应用的业务逻辑 · Django的视图也就是一个函数,可称为视图函数 · 视图定义在应用的view.py文件中 · 视图需要绑定一个URL地址 ...