CF605E Intergalaxy Trips
CF605E Intergalaxy Trips
考虑你是不知道后来的边的出现情况的,所以可以这样做:每天你都选择一些点进行观察,知道某天往这些点里面的某条边可用了,你就往这条边走。这样贪心总是对的。
我们定义一个点的权值就是这个点到 $ n $ 的期望距离。同时它就是我们要算的答案。
但是注意到一个性质,我们总是从期望较大的点走向期望较小的点(显然的)。
所以我们可以类似反过来的 dijkstra 的更新,维护当前权值的点,然后这个点当前的值就必然是最终这个点的答案。所以我们可以拿它去更新到达它的点。
加入我们当前打算使用点 $ u $ 当前我们要考虑所有可以到达 $ u $ 的点,这些点已经被某些其他点更新过了。但是我们知道更新这些点的点肯定比 $ u $ 小。我们考虑当前枚举一个点 $ v $ ,然后尝试用 $ u $ 去更新 $ v $ 。注意 $ v $ 已经被一些点(设为 $ a_{1\dots n} $) 更新过了,并且 $ a_{1\dots n} $ 的权值都小于 $ u $ 。
这个时候我们考虑某一天,要么 $ v $ 到 $ a_{1\dots n} $ 至少一个点有边,这种情况下无论 $ v $ 到 $ u $ 是否有边都会走到 $ a_{1\dots n} $ 。所以真正能够通过 $ v $ 走到 $ u $ 的情况是某一天 $ v $ 到 $ u $ 有边并且到其他的点没边。
注意任意选择一个前缀时,等在这个地方的概率不同,是需要计算进去的。
注意 $ n $ 只有 $ 10^3 $,可以直接跑 $ O(n^2) $ 的 dijkstra 跑过去。
#include "iostream"
#include "algorithm"
#include "cstring"
#include "cstdio"
#include "queue"
using namespace std;
#define MAXN 1006
int n;
double p[MAXN][MAXN];
double dp[MAXN] , tmp[MAXN] , f[MAXN];
int vis[MAXN];
int main() {
cin >> n;
for( int i = 1 ; i <= n ; ++ i )
for( int j = 1 , q ; j <= n ; ++ j ) scanf("%d",&q) , p[i][j] = 1.0 * q / 100;
for( int i = 1 ; i <= n ; ++ i ) dp[i] = 3e18 , tmp[i] = 1;
dp[n] = 0;
for( int i = 1 , u = 0 ; i <= n ; ++ i ) {
double mn = 3e18;
for( int j = 1 ; j <= n ; ++ j ) if( !vis[j] && dp[j] < mn ) mn = dp[j] , u = j;
vis[u] = 1;
for( int v = 1 ; v <= n ; ++ v ) if( !vis[v] && p[v][u] > 1e-8 ) {
double ls = 1 - tmp[v]; tmp[v] *= 1.0 - p[v][u];
double t = ls / ( 1 - tmp[v] ); // 在这个点的情况中,其他边出现至少一条的概率 / 当前边加入后至少出现一条的概率
double r1 = t * f[v] , r2 = ( 1 - t ) * dp[u]; // 两种情况,要么按照以前的边有出现,要么只有新加入的边出现
f[v] = r1 + r2;
dp[v] = min( dp[v] , f[v] + 1 / ( 1 - tmp[v] )); // 考虑等着
}
}
printf("%.7lf",dp[1]);
}
CF605E Intergalaxy Trips的更多相关文章
- CF605E Intergalaxy Trips 贪心 概率期望
(当时写这篇题解的时候,,,不知道为什么,,,写的非常冗杂,,,不想改了...) 题意:一张有n个点的图,其中每天第i个点到第j个点的边都有$P_{i, j}$的概率开放,每天可以选择走一步或者留在原 ...
- 【CF605E】Intergalaxy Trips(贪心,动态规划)
[CF605E]Intergalaxy Trips(贪心,动态规划) 题面 Codeforces 洛谷 有\(n\)个点,每个时刻第\(i\)个点和第\(j\)个点之间有\(p_{ij}\)的概率存在 ...
- CF#335 Intergalaxy Trips
Intergalaxy Trips time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- CodeForces 605 E. Intergalaxy Trips
E. Intergalaxy Trips time limit per test:2 seconds memory limit per test:256 megabytes input:standar ...
- [Codeforces]605E Intergalaxy Trips
小C比较棘手的概率期望题,感觉以后这样的题还会贴几道出来. Description 给定一个n*n的邻接矩阵,邻接矩阵中元素pi,j表示的是从 i 到 j 这条单向道路在这一秒出现的概率百分比,走一条 ...
- Intergalaxy Trips CodeForces - 605E (期望,dijkstra)
大意: 给定矩阵$p$, $p_{i,j}$表示每一秒点$i$到点$j$有一条边的概率, 每秒钟可以走一条边, 或者停留在原地, 求最优决策下从$1$到$n$的期望用时. $f_x$为从$x$到$n$ ...
- E. Intergalaxy Trips
完全图,\(1 \leq n \leq 1000\)每一天边有 \(p_{i,j}=\frac{A_{i,j}}{100}\) 的概率出现,可以站在原地不动,求 \(1\) 号点到 \(n\) 号点期 ...
- [LeetCode] Trips and Users 旅行和用户
The Trips table holds all taxi trips. Each trip has a unique Id, while Client_Id and Driver_Id are b ...
- 【Leetcode-Mysql】Trips and Users
思路不总结了,看过题目自己尝试过之后,看下方代码应该能理解的 SELECT Request_at AS DAY, round( sum( CASE WHEN STATUS = 'completed' ...
随机推荐
- 反调试——11——检测TF标志寄存器
反调试--11--检测TF标志寄存器 在intel的x86寄存器中有一种叫标志寄存器: 标志寄存器中的TF(Trap Flag)位,CPU在执行完一条指令后,如果检测到标志寄存器的TF位为1,则会产生 ...
- 第31篇-方法调用指令之invokevirtual
invokevirtual字节码指令的模板定义如下: def(Bytecodes::_invokevirtual , ubcp|disp|clvm|____, vtos, vtos, invokevi ...
- [技术博客] 利用SharedPreferences来实现登录状态的记忆功能
[技术博客] 利用SharedPreferences来实现登录状态的记忆功能 一.SharedPreferences简介 SharedPreferences是Android平台上一个轻量级的存储辅助类 ...
- 微信小程序的实现原理
一.背景 网页开发,渲染线程和脚本是互斥的,这也是为什么长时间的脚本运行可能会导致页面失去响应的原因,本质就是我们常说的 JS 是单线程的 而在小程序中,选择了 Hybrid 的渲染方式,将视图层和逻 ...
- GPIO原理与配置(跑马灯,蜂鸣器,按键)
一.STM32 GPIO固件库函数配置方法 1. 根据需要在项目中删掉一些不用的固件库文件,保留有用的固件库文件 2. 在stm32f10x_conf.h中注释掉这些不用的头文件 3. STM32的I ...
- Linux多线程编程之详细分析
线程?为什么有了进程还需要线程呢,他们有什么区别?使用线程有什么优势呢?还有多线程编程的一些细节问题,如线程之间怎样同步.互斥,这些东西将在本文中介绍.我见到这样一道面试题: 是否熟悉POSIX多线程 ...
- 第08课 OpenGL 混合
混合: 在这一课里,我们在纹理的基础上加上了混合,它看起具有透明的效果,当然解释它不是那么容易,当希望你喜欢它. 简单的透明OpenGL中的绝大多数特效都与某些类型的(色彩)混合有关.混色的定义为,将 ...
- Gitee图床设置
https://gitee.com/ 创建新仓库 点击右上角加号->新建仓库,填写基本信息后点击下面的创建即可 https://gitee.com/projects/new 创建新令牌 点击设置 ...
- 『学了就忘』Linux基础命令 — 19、目录操作的相关命令
目录 1.ls命令 2.cd命令 (1)绝对路径和相对路径 (2)cd命令的简化用法 3.pwd命令 4.mkdir命令 5.rmdir命令 常用目录操作的相关命令: ls命令 cd命令 pwd命令 ...
- Centos7下安装BlockScout
简介 BlockScout是一个Elixir应用程序,允许用户搜索以太坊网络(包括所有叉子和侧链)上的交易,查看账户和余额以及验证智能合约.BlockScout为用户提供了一个全面,易于使用的界面,以 ...