洛谷 P4900 - 食堂(推式子)
首先推式子:
ans&=\sum\limits_{i=A}^B\sum\limits_{j=1}^i\{\dfrac{i}{j}\}
\end{aligned}
\]
考虑差分,设
\]
那么
\]
考虑如何计算 \(f(n)\):
f(n)&=\sum\limits_{i=1}^n\sum\limits_{j=1}^i\{\dfrac{i}{j}\}\\
&=\sum\limits_{i=1}^n\sum\limits_{j=1}^i\dfrac{i}{j}-\lfloor\dfrac{i}{j}\rfloor\\
&=\sum\limits_{i=1}^ni·\sum\limits_{j=1}^i\dfrac{1}{j}-\sum\limits_{i=1}^n\sum\limits_{j=1}^n\lfloor\dfrac{i}{j}\rfloor\\
\end{aligned}
\]
如果设 \(s_i=\sum\limits_{j=1}^i\dfrac{1}{j}\),那么减号前面的东西可写作 \(\sum\limits_{i=1}^ni·s_i\),一遍前缀和求出。下面着重考虑减号右边的东西:
\sum\limits_{i=1}^n\sum\limits_{j=1}^n\lfloor\dfrac{i}{j}\rfloor
\end{aligned}
\]
然后就是此题一个比较亮眼的地方了,考虑对 \(\lfloor\dfrac{i}{j}\rfloor\) 进行等价转化,不难发现 \(\lfloor\dfrac{i}{j}\rfloor=\sum\limits_{j\mid k}[k\le i]\),于是乎原式改写为:
\]
考虑每个 \(k\) 会对多少对 \((i,j)\) 产生贡献,显然符合条件的 \(i\) 的个数为 \((n+1-i)\),\(j\) 的个数为 \(d(k)\),其中 \(d\) 为约数个数和函数,那么上式可进一步写作:
\]
维护 \(d(k),k·d(k)\) 的前缀和即可快速计算上式。
如果您比较勤快使用线性筛求解 \(d\) 那么时间复杂度为 \(\mathcal O(n)\),而我比较懒所以直接调和级数枚举,复杂度 \(n\log n\)。
using namespace fastio;
const int MAXN=1e6;
int inv[MAXN+5],s[MAXN+5],ss[MAXN+5],d[MAXN+5],sd[MAXN+5],ssd[MAXN+5];
void init(){
for(int i=(inv[0]=inv[1]=1)+1;i<=MAXN;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=MAXN;i++) s[i]=(s[i-1]+inv[i])%MOD,ss[i]=(ss[i-1]+1ll*s[i]*i)%MOD;
for(int i=1;i<=MAXN;i++) for(int j=i;j<=MAXN;j+=i) d[j]++;
for(int i=1;i<=MAXN;i++) sd[i]=(sd[i-1]+d[i])%MOD,ssd[i]=(ssd[i-1]+1ll*i*d[i])%MOD;
}
int calc(int x){return (ss[x]-(1ll*(x+1)*sd[x]%MOD-ssd[x]+MOD)%MOD+MOD)%MOD;}
int main(){
init();int qu;read(qu);
while(qu--){
int l,r;read(l);read(r);
printf("%d\n",(calc(r)-calc(l-1)+MOD)%MOD);
}
return 0;
}
洛谷 P4900 - 食堂(推式子)的更多相关文章
- [洛谷P4900]食堂
题目大意:$n(n\leqslant10^6)$组询问,每组询问给出$l,r(l,r\leqslant10^6)$,求($\{\dfrac ij\}$表示$\dfrac ij$的小数部分): $$\s ...
- NOIP2000方格取数(洛谷,动态规划递推)
先上题目: P1004 方格取数 下面上ac代码: ///如果先走第一个再走第二个不可控因素太多 #include<bits/stdc++.h> #define ll long long ...
- P1541 乌龟棋 题解(洛谷,动态规划递推)
题目:P1541 乌龟棋 感谢大神的题解(他的写的特别好) 写一下我对他的代码的理解吧(哎,蒟蒻就这能这样...) 代码: #include<bits/stdc++.h> #define ...
- P1616 疯狂的采药(洛谷,动态规划递推,完全背包)
先上题目链接:P1616 疯狂的采药 然后放AC代码: #include<bits/stdc++.h> #define ll long long using namespace std; ...
- P1060 开心的金明(洛谷,动态规划递推,01背包轻微变形题)
题目链接:P1060 开心的金明 基本思路: 基本上和01背包原题一样,不同点在于这里要的是最大重要度*价格总和,我们之前原题是 f[j]=max(f[j],f[j-v[i]]+p[i]); 那么这里 ...
- P1048 采药(洛谷,动态规划递推,01背包原题)
题目直接放链接 P1048 采药 这题只是01背包+背景故事而已 原题来的 PS:我写了一篇很详细的01背包说明,如果下面ac代码有看不懂的地方可以去看看 对01背包的分析与理解(图文) 下面上ac代 ...
- 洛谷 P7360 -「JZOI-1」红包(Min-Max 容斥+推式子)
洛谷题面传送门 hot tea. 首先注意到这个 \(\text{lcm}\) 特别棘手,并且这里的 \(k\) 大得离谱,我们也没办法直接枚举每个质因子的贡献来计算答案.不过考虑到如果我们把这里的 ...
- 洛谷 P6031 - CF1278F Cards 加强版(推式子+递推)
洛谷题面传送门 u1s1 这个推式子其实挺套路的吧,可惜有一步没推出来看了题解 \[\begin{aligned} res&=\sum\limits_{i=0}^ni^k\dbinom{n}{ ...
- 洛谷 1447 [NOI2010]能量采集——容斥/推式子
题目:https://www.luogu.org/problemnew/show/P1447 1.容斥原理 求 f [ i ] 表示 gcd==i 的对数,先 f [ i ] = (n/i) * (m ...
随机推荐
- HTTP标签
系统的http状态码知识,我是在<图解http里学习的>. 状态码的职责是告知从服务器端返回的请求结果. 分类如下: 2XX --> 成功 200 OK(一般情况) 204 No C ...
- Takin Talks·上海 |开源后首场主题研讨会来了,一起解密Takin技术吧!
自 6 月 25 日全球首款生产环境全链路压测平台 Takin 正式开源,短短 13 天时间,Github 主页上 Star 数已超过 730,开发者社群也积累了 1500+粉丝.群内技术研讨氛围 ...
- 什么是Sprint计划?
Sprint 计划是Scrum框架中的一个事件,团队将确定他们将在冲刺期间处理的产品积压项目,并讨论他们完成这些产品积压项目的初始计划. 团队可能会发现建立冲刺目标很有帮助,并以此为基础确定他们在冲刺 ...
- RSA加密——前端JSEncrypt
RSA加密--前端JSEncrypt 介绍 JSEncrypt是一个RSA加密库,在没有SSL加密传输通道支持https协议的情况下,该库可以在http传输重要信息如时,保证数据的安全性.我们小组 ...
- stm32学习笔记之GPIO功能框图分析
GPIO 是通用输入输出端口的简称,简单来说就是STM32 可控制的引脚,STM32 芯片的GPIO 引脚与外部设备连接起来,从而实现与外部通讯.控制以及数据采集的功能.STM32 芯片的GPIO被分 ...
- (转载)关于Linux C函数strtok的使用要点
今天遇到了处理字符串的问题,比如分割问题,但是一时间想不起来什么方法,也不想手写一个类似java String中的split函数,于是百度了一下,发现了strtok这个好用的方法,以此作为总结. st ...
- Luogu P2822 [NOIp2016提高组]组合数问题 | 数学、二维前缀和
题目链接 思路:组合数就是杨辉三角,那么我们只要构造一个杨辉三角就行了.记得要取模,不然会爆.然后,再用二维前缀和统计各种情况下组合数是k的倍数的方案数.询问时直接O(1)输出即可. #include ...
- hdu 1861 游船出租(模拟题,,水)
题意: 现有公园游船租赁处请你编写一个租船管理系统. 当游客租船时,管理员输入船号并按下S键,系统开始计时:当游客还船时,管理员输入船号并按下E键,系统结束计时. 船号为不超过100的正整数.当管理员 ...
- Django(73)django-debug-toolbar调试工具
介绍 Django框架的调试工具栏使用django-debug-toolbar库,是一组可配置的面板,显示有关当前请求/响应的各种调试信息,点击时,显示有关面板内容的更多详细信息. 应用 1. 安装 ...
- python解释器下载安装指导
一.python解释器下载 想要通关python这项语言与计算机进行沟通,我们就必须下载一款能让计算机理解python这项语言的解释器,这时候我们就需要到网上下一个python解释器. python解 ...