洛谷 P4900 - 食堂(推式子)
首先推式子:
ans&=\sum\limits_{i=A}^B\sum\limits_{j=1}^i\{\dfrac{i}{j}\}
\end{aligned}
\]
考虑差分,设
\]
那么
\]
考虑如何计算 \(f(n)\):
f(n)&=\sum\limits_{i=1}^n\sum\limits_{j=1}^i\{\dfrac{i}{j}\}\\
&=\sum\limits_{i=1}^n\sum\limits_{j=1}^i\dfrac{i}{j}-\lfloor\dfrac{i}{j}\rfloor\\
&=\sum\limits_{i=1}^ni·\sum\limits_{j=1}^i\dfrac{1}{j}-\sum\limits_{i=1}^n\sum\limits_{j=1}^n\lfloor\dfrac{i}{j}\rfloor\\
\end{aligned}
\]
如果设 \(s_i=\sum\limits_{j=1}^i\dfrac{1}{j}\),那么减号前面的东西可写作 \(\sum\limits_{i=1}^ni·s_i\),一遍前缀和求出。下面着重考虑减号右边的东西:
\sum\limits_{i=1}^n\sum\limits_{j=1}^n\lfloor\dfrac{i}{j}\rfloor
\end{aligned}
\]
然后就是此题一个比较亮眼的地方了,考虑对 \(\lfloor\dfrac{i}{j}\rfloor\) 进行等价转化,不难发现 \(\lfloor\dfrac{i}{j}\rfloor=\sum\limits_{j\mid k}[k\le i]\),于是乎原式改写为:
\]
考虑每个 \(k\) 会对多少对 \((i,j)\) 产生贡献,显然符合条件的 \(i\) 的个数为 \((n+1-i)\),\(j\) 的个数为 \(d(k)\),其中 \(d\) 为约数个数和函数,那么上式可进一步写作:
\]
维护 \(d(k),k·d(k)\) 的前缀和即可快速计算上式。
如果您比较勤快使用线性筛求解 \(d\) 那么时间复杂度为 \(\mathcal O(n)\),而我比较懒所以直接调和级数枚举,复杂度 \(n\log n\)。
using namespace fastio;
const int MAXN=1e6;
int inv[MAXN+5],s[MAXN+5],ss[MAXN+5],d[MAXN+5],sd[MAXN+5],ssd[MAXN+5];
void init(){
for(int i=(inv[0]=inv[1]=1)+1;i<=MAXN;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=MAXN;i++) s[i]=(s[i-1]+inv[i])%MOD,ss[i]=(ss[i-1]+1ll*s[i]*i)%MOD;
for(int i=1;i<=MAXN;i++) for(int j=i;j<=MAXN;j+=i) d[j]++;
for(int i=1;i<=MAXN;i++) sd[i]=(sd[i-1]+d[i])%MOD,ssd[i]=(ssd[i-1]+1ll*i*d[i])%MOD;
}
int calc(int x){return (ss[x]-(1ll*(x+1)*sd[x]%MOD-ssd[x]+MOD)%MOD+MOD)%MOD;}
int main(){
init();int qu;read(qu);
while(qu--){
int l,r;read(l);read(r);
printf("%d\n",(calc(r)-calc(l-1)+MOD)%MOD);
}
return 0;
}
洛谷 P4900 - 食堂(推式子)的更多相关文章
- [洛谷P4900]食堂
题目大意:$n(n\leqslant10^6)$组询问,每组询问给出$l,r(l,r\leqslant10^6)$,求($\{\dfrac ij\}$表示$\dfrac ij$的小数部分): $$\s ...
- NOIP2000方格取数(洛谷,动态规划递推)
先上题目: P1004 方格取数 下面上ac代码: ///如果先走第一个再走第二个不可控因素太多 #include<bits/stdc++.h> #define ll long long ...
- P1541 乌龟棋 题解(洛谷,动态规划递推)
题目:P1541 乌龟棋 感谢大神的题解(他的写的特别好) 写一下我对他的代码的理解吧(哎,蒟蒻就这能这样...) 代码: #include<bits/stdc++.h> #define ...
- P1616 疯狂的采药(洛谷,动态规划递推,完全背包)
先上题目链接:P1616 疯狂的采药 然后放AC代码: #include<bits/stdc++.h> #define ll long long using namespace std; ...
- P1060 开心的金明(洛谷,动态规划递推,01背包轻微变形题)
题目链接:P1060 开心的金明 基本思路: 基本上和01背包原题一样,不同点在于这里要的是最大重要度*价格总和,我们之前原题是 f[j]=max(f[j],f[j-v[i]]+p[i]); 那么这里 ...
- P1048 采药(洛谷,动态规划递推,01背包原题)
题目直接放链接 P1048 采药 这题只是01背包+背景故事而已 原题来的 PS:我写了一篇很详细的01背包说明,如果下面ac代码有看不懂的地方可以去看看 对01背包的分析与理解(图文) 下面上ac代 ...
- 洛谷 P7360 -「JZOI-1」红包(Min-Max 容斥+推式子)
洛谷题面传送门 hot tea. 首先注意到这个 \(\text{lcm}\) 特别棘手,并且这里的 \(k\) 大得离谱,我们也没办法直接枚举每个质因子的贡献来计算答案.不过考虑到如果我们把这里的 ...
- 洛谷 P6031 - CF1278F Cards 加强版(推式子+递推)
洛谷题面传送门 u1s1 这个推式子其实挺套路的吧,可惜有一步没推出来看了题解 \[\begin{aligned} res&=\sum\limits_{i=0}^ni^k\dbinom{n}{ ...
- 洛谷 1447 [NOI2010]能量采集——容斥/推式子
题目:https://www.luogu.org/problemnew/show/P1447 1.容斥原理 求 f [ i ] 表示 gcd==i 的对数,先 f [ i ] = (n/i) * (m ...
随机推荐
- html视口单位:vw,vh,rem
前言 不像响应式布局,通过media query,设置几个变化点来适配,流体排版通过调整大小,适配所有设备宽度.这个方法可以使我们开发的网页,在几乎所有屏幕尺寸上都可以使用.但出于一些原因,它的使用率 ...
- jmeter基础功能及认识
1.基础知识: JMeter是免费开源的,纯java开发的性能测试工具,可以测试静态和动态的资源,例如:静态文件.java服务小程序.CGI脚本.java对象.数据库.FTP服务器.邮件服务器和Per ...
- vue3.x组件间通信,实用小技巧都在这里
本想简单写写,没想到说清楚已经变成了一篇很长的帖子,欢迎当笔记搜藏起来. props / emits 父子组件通信 props一般负责向子组件传递数据 下面是一个简单的例子,父组件向子组件传递了一个t ...
- 面试不再慌,终于有人把TCP讲明白了。。。
前言 TCP(Transmission Control Protocol,传输控制协议) 是计算机网络的的重要组成部分,也是网络编程的重要内容,还有我们平时接触最多的 HTTP 也是基于 TCP 实现 ...
- USB_ID OTG
谁知道USB_ID pin 脚的功能意义?是干什么用的?USB 中不就有 VDD,GND,USB+,USB- 并没有USB_ID 的信息呀?检测ID脚状态高低,从而判断为主设备或从设备,otg的时候用 ...
- Spring Security:Authentication 认证(一)
1. Spring Security 简介 在 Spring 生态系统中,为他的项目增加安全性,你可以借助 Spring Security 库来做到这一点. 那什么是 Spring Security? ...
- 寻找下一个结点 牛客网 程序员面试金典 C++ java Python
寻找下一个结点 牛客网 程序员面试金典 C++ java Python 题目描述 请设计一个算法,寻找二叉树中指定结点的下一个结点(即中序遍历的后继). 给定树的根结点指针TreeNode* root ...
- Python SyntaxError: Missing parentheses in call to 'print'
下面的代码 print "hello world" 会出现下面的错误 SyntaxError: Missing parentheses in call to 'print' 因为写 ...
- Swift进阶-内存管理
本文的主要目的是探索 RefCount 的内存结构及强/弱引用计数管理 Swift 中也是采用 ARC 编译器自动内存管理机制. Swift 对象的内存结构是 HeapObject, 有两个属性 Me ...
- k8s入坑之路(11)kubernetes服务发现
kubernetes访问场景 1.集群内部访问 2.集群内部访问外部 3.集群外部访问内部 1.集群内部访问 1.pod之间直接ip通讯(利用calico通过路由表经过三层将ip流量转发)由于容器之间 ...