P5296 [北京省选集训2019]生成树计数

题意

求一个带权无向图所有生成树边权和的 \(k\) 次方的和。

思路

首先有一个结论:\(a^i\) 的 EGF 卷 \(b^i\) 的 EGF 等于 \((a+b)^i\) 的 EGF。即:

\[F(a)=\sum_{i=0}\frac{a^ix^i}{i!}\\
F(a+b)=F(a)*F(b)
\]

证明如下:

\[(a+b)^k=\sum_{i=0}^k{k\choose i}a^ib^{k-i}=\sum_{i=0}^k\frac{k!}{i!(k-i)!} a^ib^{k-i}\\
\Rightarrow \sum_{i=0}^k\frac{a^i}{i!}\frac{b^{k-i}}{(k-i)!}k!=(a+b)^k \\
\Rightarrow \sum_{i=0}^k\frac{a^i}{i!}\frac{b^{k-i}}{(k-i)!}=\frac{(a+b)^k}{k!}\\
\]

然后又有一个结论:度数矩阵减去邻接矩阵的余子式的行列式的值是图所有生成树边权积的和。其中,度数矩阵表示与其相连的边权的和,邻接矩阵为边权。这是矩阵树定理。

于是,我们将边权化为生成函数,然后利用矩阵树定理算出来答案的生成函数即可。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cmath>
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=x*10+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=35,mod=998244353;
int n,k,mul[maxn],inv[maxn];
inline int fpow(int a,int b){int ans=1;for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) ans=1ll*ans*a%mod;return ans;}
struct poly{
int a[maxn];
poly():a(){}
poly(int x):a(){for(int i=0,d=1;i<=k;i++,d=1ll*d*x%mod) a[i]=1ll*star::inv[i]*d%mod;}
int& operator [](const int &x){return a[x];}
const int &operator [](const int &x) const {return a[x];}
friend poly operator + (const poly& a,const poly& b) {
poly ans;
for(int i=0;i<=k;i++) ans[i]=(a[i]+b[i])%mod;
return ans;
}
friend poly operator - (const poly& a,const poly& b) {
poly ans;
for(int i=0;i<=k;i++) ans[i]=(a[i]-b[i]+mod)%mod;
return ans;
}
friend poly operator * (const poly& a,const poly& b) {
poly ans;
for(int i=0;i<=k;i++) for(int j=0;j<=i;j++) ans[i]=(ans[i]+1ll*a[j]*b[i-j])%mod;
return ans;
}
inline poly operator - () const {
poly ans;
for(int i=0;i<=k;i++) ans[i]=(mod-a[i])%mod;
return ans;
}
inline poly inv() const {
poly ans,res;
ans[0]=fpow(a[0],mod-2);
for(int i=1;i<=k;i++) res[i]=1ll*a[i]*ans[0]%mod;
for(int i=1;i<=k;i++) for(int j=1;j<=i;j++) ans[i]=(ans[i]+1ll*(mod-res[j])*ans[i-j])%mod;
return ans;
}
}a[maxn][maxn],ans;
inline void work(){
n=read()-1,k=read();
mul[0]=inv[0]=1;
for(int i=1;i<=k;i++) mul[i]=1ll*mul[i-1]*i%mod;
inv[k]=fpow(mul[k],mod-2);for(int i=k-1;i>0;i--) inv[i]=1ll*inv[i+1]*(i+1)%mod;
for(int i=0;i<=n;i++) for(int j=0;j<=n;j++) if(i!=j) a[i][j]=-poly(read()),a[i][i]=a[i][i]-a[i][j];else read();
ans[0]=1;
for(int i=1;i<=n;i++){
poly x=a[i][i].inv();
ans=ans*a[i][i];
for(int j=i;j<=n;j++) a[i][j]=a[i][j]*x;
for(int j=1;j<=n;j++) if(j!=i){
poly res=a[j][i];
for(int k=i;k<=n;k++) a[j][k]=a[j][k]-a[i][k]*res;
}
}
printf("%lld\n",1ll*ans[k]*mul[k]%mod);
}
}
signed main(){
star::work();
return 0;
}

P5296 [北京省选集训2019]生成树计数的更多相关文章

  1. Luogu P5296 [北京省选集训2019]生成树计数

    Luogu P5296 [北京省选集训2019]生成树计数 题目链接 题目大意:给定每条边的边权.一颗生成树的权值为边权和的\(k\)次方.求出所有生成树的权值和. 我们列出答案的式子: 设\(E\) ...

  2. 洛谷 P4002 - [清华集训2017]生成树计数(多项式)

    题面传送门 神题. 考虑将所有连通块缩成一个点,那么所有连好边的生成树在缩点之后一定是一个 \(n\) 个点的生成树.我们记 \(d_i\) 为第 \(i\) 个连通块缩完点之后的度数 \(-1\), ...

  3. Loj 2320.「清华集训 2017」生成树计数

    Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...

  4. 2019暑期金华集训 Day1 组合计数

    自闭集训 Day1 组合计数 T1 \(n\le 10\):直接暴力枚举. \(n\le 32\):meet in the middle,如果左边选了\(x\),右边选了\(y\)(且\(x+y\le ...

  5. 生成树计数 Matrix-Tree 定理 学习笔记

    一直都知道要用Matrix-Tree定理来解决生成树计数问题,但是拖到今天才来学.博主数学不好也只能跟着各位大佬博客学一下它的应用以及会做题,证明实在是不会. 推荐博客: https://www.cn ...

  6. 【BZOJ1002】【FJOI2007】轮状病毒(生成树计数)

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1766  Solved: 946[Submit][Status ...

  7. SPOJ 104 HIGH - Highways 生成树计数

    题目链接:https://vjudge.net/problem/SPOJ-HIGH 解法: 生成树计数 1.构造 基尔霍夫矩阵(又叫拉普拉斯矩阵) n阶矩阵 若u.v之间有边相连 C[u][v]=C[ ...

  8. 「UVA10766」Organising the Organisation(生成树计数)

    BUPT 2017 Summer Training (for 16) #6C 题意 n个点,完全图减去m条边,求生成树个数. 题解 注意可能会给重边. 然后就是生成树计数了. 代码 #include ...

  9. SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)

    题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...

随机推荐

  1. CArray CList CMap 插入与遍历效率对比

    前言:程序中经常用到不定量数组,选择上可以使用CArray,CList,CMap,而这三者插入及遍历的效率,未测试过,随着数据量越来越大,需要做程序上的优化,于是比较下三种类型的插入盒遍历的效率. 一 ...

  2. LeetCode:322. 零钱兑换

    链接:https://leetcode-cn.com/problems/coin-change/ 标签:动态规划.完全背包问题.广度优先搜索 题目 给定不同面额的硬币 coins 和一个总金额 amo ...

  3. Idea的安装破解及配置

    安装激活 30天试用无线版 博客园下载地址:https://files.cnblogs.com/files/blogs/482725/无限30天试用插件.zip 百度云下载链接: https://pa ...

  4. 【NX二次开发】Block UI 指定位置

    属性说明 属性   类型   描述   常规           BlockID    String    控件ID    Enable    Logical    是否可操作    Group    ...

  5. 【NX二次开发】移动WCS坐标系

    说明:移动WCS坐标系 用法: #include <uf.h> #include <uf_csys.h> extern DllExport void ufusr(char *p ...

  6. 【NX二次开发】修改dlx对话框标题的方法

    修改dlx名称, 修改对话框标题的方法: theDialog->TopBlock()->FindBlock("Dialog")->GetProperties()- ...

  7. 详解apollo的设计与使用

    简介 apollo 是一款由携程团队开发的配置中心,可以实现配置的集中管理.分环境管理.即时生效等等.在这篇博客中,我们可以了解到: 为什么使用配置中心 如何设计一个配置中心 apollo 是如何设计 ...

  8. Linux关闭打开防火墙命令

    Linux下打开和关闭防火墙 1.及时生效,重启后复原 关闭:service iptables stop  开启:service iptalbes start  查看状态:service iptabl ...

  9. SpringBoot项目创建流程--SpringMVC

    SpringBoot项目创建步骤 1. 创建SpringBoot工程 (1) File → New → Project → Spring Initilizr (2) Name:MySpringBoot ...

  10. 使⽤Swagger2构建强⼤的RESTful API⽂档

    使⽤Swagger2构建强⼤的RESTful API⽂档 导语: 由于Spring Boot能够快速开发.便捷部署等特性,相信有很⼤⼀部分Spring Boot的⽤户会⽤来构建RESTful API. ...