JoJoGAN 实践
JoJoGAN: One Shot Face Stylization. 只用一张人脸图片,就能学习其风格,然后迁移到其他图片。训练时长只用 1~2 min 即可。
效果:

主流程:

本文分享了个人在本地环境(非 colab)实践 JoJoGAN 的整个过程。你也可以依照本文上手训练自己喜欢的风格。
准备环境
安装:
conda create -n torch python=3.9 -y
conda activate torch
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -y
检查:
$ python - <<EOF
import torch, torchvision
print(torch.__version__, torch.cuda.is_available())
EOF
1.10.1 True
准备代码
git clone https://github.com/mchong6/JoJoGAN.git
cd JoJoGAN
pip install tqdm gdown matplotlib scipy opencv-python dlib lpips wandb
# Ninja is required to load C++ extensions
wget https://github.com/ninja-build/ninja/releases/download/v1.10.2/ninja-linux.zip
sudo unzip ninja-linux.zip -d /usr/local/bin/
sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force
然后,将本文提供的几个 *.py 放进 JoJoGAN 目录,从这里获取: https://github.com/ikuokuo/start-deep-learning/tree/master/practice/JoJoGAN 。
download_models.py: 获取模型generate_faces.py: 生成人脸stylize.py: 风格化train.py: 训练
之后,于训练流程一节,会结合代码,讲述下 JoJoGAN 的工作流程。其他些 *.py 只提下用法,实现就不多说了。
获取模型
python download_models.py 获取模型,如下:
models/
├── arcane_caitlyn_preserve_color.pt
├── arcane_caitlyn.pt
├── arcane_jinx_preserve_color.pt
├── arcane_jinx.pt
├── arcane_multi_preserve_color.pt
├── arcane_multi.pt
├── art.pt
├── disney_preserve_color.pt
├── disney.pt
├── dlibshape_predictor_68_face_landmarks.dat
├── e4e_ffhq_encode.pt
├── jojo_preserve_color.pt
├── jojo.pt
├── jojo_yasuho_preserve_color.pt
├── jojo_yasuho.pt
├── restyle_psp_ffhq_encode.pt
├── stylegan2-ffhq-config-f.pt
├── supergirl_preserve_color.pt
└── supergirl.pt
生成人脸
用 StyleGAN2 预训练模型随机生成人脸,用于测试:
python generate_faces.py -n 5 -s 2000 -o input
使用预训练风格
JoJoGAN 给了 8 个预训练模型,可以一并体验,与文首的效果图一样:
# 预览 JoJoGAN 所有预训练模型 风格化某图片(test_input/iu.jpeg)的效果
python stylize.py -i test_input/iu.jpeg -s all --save-all --show-all
# 使用 JoJoGAN 所有预训练模型 风格化所有生成的测试人脸(input/*)
find ./input -type f -print0 | xargs -0 -i python stylize.py -i {} -s all --save-all
训练自己的风格
首先,准备一张风格图:

之后,开始训练:
python train.py -n yinshi -i style_images/yinshi.jpeg --alpha 1.0 --num_iter 500 --latent_dim 512 --use_wandb --log_interval 50
--use_wandb 时,可查看训练日志:

最后,测试效果:
python stylize.py -i input/girl.jpeg --save-all --show-all --test_style yinshi --test_ckpt output/yinshi.pt --test_ref output/yinshi/style_images_aligned/yinshi.png

训练工作流程
准备风格图片,转为训练数据
将风格图片里的人脸裁减对齐:
# dlib 预测人脸特征点,再裁减对齐
from util import align_face
style_aligned = align_face(img_path)
将风格图片 GAN Inversion 逆映射回预训练模型的隐向量空间(Latent Space):
name, _ = os.path.splitext(os.path.basename(img_path))
style_code_path = os.path.join(latent_dir, f'{name}.pt')
# e4e FFHQ encoder (pSp) > GAN inversion,得到 latent
from e4e_projection import projection
latent = projection(style_aligned, style_code_path, device)
载入 StyleGAN2 模型,训练微调
载入预训练模型:
latent_dim = 512
# 加载预训练模型
original_generator = Generator(1024, latent_dim, 8, 2).to(device)
ckpt = torch.load("models/stylegan2-ffhq-config-f.pt", map_location=lambda storage, loc: storage)
original_generator.load_state_dict(ckpt["g_ema"], strict=False)
# 准备微调的模型
generator = deepcopy(original_generator)
训练可调参数:
# 控制风格强度 [0, 1]
alpha = 1.0
alpha = 1-alpha
# 是否保留原图像色彩
preserve_color = True
# 训练迭代次数(最好 500,Adam 学习率是基于 500 次迭代调优的)
num_iter = 500
# 风格图片 targets 及 latents
targets = ..
latents = ..
进行训练,拟合隐空间。最后保存:
# 准备 LPIPS 计算 loss
lpips_fn = lpips.LPIPS(net='vgg').to(device)
# 准备优化器
g_optim = torch.optim.Adam(generator.parameters(), lr=2e-3, betas=(0, 0.99))
# 哪些层用于交换,用于生成风格化图片
if preserve_color:
id_swap = [7,9,11,15,16,17]
else:
id_swap = list(range(7, generator.n_latent))
# 训练迭代
for idx in tqdm(range(num_iter)):
# 交换层混合风格,并加噪声
mean_w = generator.get_latent(torch.randn([latents.size(0), latent_dim])
.to(device)).unsqueeze(1).repeat(1, generator.n_latent, 1)
in_latent = latents.clone()
in_latent[:, id_swap] = alpha*latents[:, id_swap] + (1-alpha)*mean_w[:, id_swap]
# 以 latent 风格化图片,与目标风格对比
img = generator(in_latent, input_is_latent=True)
loss = lpips_fn(F.interpolate(img, size=(256,256), mode='area'),
F.interpolate(targets, size=(256,256), mode='area')).mean()
# 优化
g_optim.zero_grad()
loss.backward()
g_optim.step()
# 保存权重,完成
torch.save({"g": generator.state_dict()}, save_path)
结语
JoJoGAN 实践下来效果不错。使用本文给到的代码,更容易上手训练自己喜欢的风格,值得试试。
JoJoGAN 实践的更多相关文章
- webp图片实践之路
最近,我们在项目中实践了webp图片,并且抽离出了工具模块,整合到了项目的基础模板中.传闻IOS10也将要支持webp,那么使用webp带来的性能提升将更加明显.估计在不久的将来,webp会成为标配. ...
- Hangfire项目实践分享
Hangfire项目实践分享 目录 Hangfire项目实践分享 目录 什么是Hangfire Hangfire基础 基于队列的任务处理(Fire-and-forget jobs) 延迟任务执行(De ...
- TDD在Unity3D游戏项目开发中的实践
0x00 前言 关于TDD测试驱动开发的文章已经有很多了,但是在游戏开发尤其是使用Unity3D开发游戏时,却听不到特别多关于TDD的声音.那么本文就来简单聊一聊TDD如何在U3D项目中使用以及如何使 ...
- Logstash实践: 分布式系统的日志监控
文/赵杰 2015.11.04 1. 前言 服务端日志你有多重视? 我们没有日志 有日志,但基本不去控制需要输出的内容 经常微调日志,只输出我们想看和有用的 经常监控日志,一方面帮助日志微调,一方面及 ...
- 【大型网站技术实践】初级篇:借助Nginx搭建反向代理服务器
一.反向代理:Web服务器的“经纪人” 1.1 反向代理初印象 反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从 ...
- Windows平台分布式架构实践 - 负载均衡
概述 最近.NET的世界开始闹腾了,微软官方终于加入到了对.NET跨平台的支持,并且在不久的将来,我们在VS里面写的代码可能就可以通过Mono直接在Linux和Mac上运行.那么大家(开发者和企业)为 ...
- Mysql事务探索及其在Django中的实践(二)
继上一篇<Mysql事务探索及其在Django中的实践(一)>交代完问题的背景和Mysql事务基础后,这一篇主要想介绍一下事务在Django中的使用以及实际应用给我们带来的效率提升. 首先 ...
- Mysql事务探索及其在Django中的实践(一)
前言 很早就有想开始写博客的想法,一方面是对自己近期所学知识的一些总结.沉淀,方便以后对过去的知识进行梳理.追溯,一方面也希望能通过博客来认识更多相同技术圈的朋友.所幸近期通过了博客园的申请,那么今天 ...
- netty5 HTTP协议栈浅析与实践
一.说在前面的话 前段时间,工作上需要做一个针对视频质量的统计分析系统,各端(PC端.移动端和 WEB端)将视频质量数据放在一个 HTTP 请求中上报到服务器,服务器对数据进行解析.分拣后从不同的 ...
随机推荐
- P1753HackSon的趣味题
1 #include<stdio.h> 2 #include<algorithm> 3 #include<iostream> 4 #include<stdli ...
- codevs 1300:文件排版(DP)
题目描述 写电子邮件是有趣的,但不幸的是经常写不好看,主要是因为所有的行不一样长,你的上司想要发排版精美的电子邮件,你的任务是为他编写一个电子邮件排版程序. 完成这个任务最简单的办法是在太短的行中的单 ...
- 『学了就忘』vim编辑器基础 — 97、vim使用技巧
目录 1.在vim中导入其他文件内容或命令结果 (1)导入其他文件内容 (2)在vim中执行系统命令 (3)导入命令结果 2.设定快捷键 3.字符替换 4.多文件打开 vim使用技巧,就是vim编辑器 ...
- eclipse的安装及最大子数组求和
我安装的是eclipse.由于eclipse是一个基于Java的课扩展开发平台,所以在安装eclipse之前要先安装Java的开发工具JDK(Java Devolopment Dit),且安装JDK需 ...
- .NET 云原生架构师训练营(ASP .NET Core 整体概念推演)--学习笔记
演化与完善整体概念 ASP .NET Core 整体概念推演 整体概念推演到具体的形式 ASP .NET Core 整体概念推演 ASP .NET Core 其实就是通过 web framework ...
- Java初学者作业——完成对已定义类(Admin)的对象的创建。并完成属性的赋值和方法的调用。
返回本章节 返回作业目录 需求说明: 完成对已定义类(Admin)的对象的创建.并完成属性的赋值和方法的调用. 实现思路: 创建 MyTest 类,并添加 main函数. 在 main函数中完成对 A ...
- 编写Java程序,使用JTable表格组件展现人员信息列表
返回本章节 返回作业目录 需求说明: 使用JTable组件显现人员信息列表 实现思路: 创建一个JTable对象. 创建一个JScrollPane对象(显示横向和纵向滚动条). 将表格添加到滚动面板. ...
- Hadoop编译打包记录
Hadoop编译打包,基于2.7.2版本的源码. # 打包过程中需要使用到的工具 java -version mvn -version ant -version type protoc type cm ...
- Swoole 中使用 HTTP 异步服务器、HTTP 协程服务器
HTTP 异步风格服务器 # http_server.php $http = new Swoole\Http\Server("0.0.0.0", 9501); // 设置服务器运行 ...
- python_接口自动化测试_处理参数替换
在进行自动化测试时,通常会存在A接口用例的返回值是B接口用例的入参这样的情况 可进行如下方式处理: step1.处理A用例时,在响应结果中提取出该数据的值,并赋给一变量,比如 exeId = res. ...