php解决约瑟夫环
今天偶遇一道算法题
“约瑟夫环”是一个数学的应用问题:一群猴子排成一圈,按1,2,…,n依次编号。然后从第1只开始数,数到第m只,把它踢出圈,从它后面再开始数, 再数到第m只,在把它踢出去…,如此不停的进行下去, 直到最后只剩下一只猴子为止,那只猴子就叫做大王。要求编程模拟此过程,输入m、n, 输出最后那个大王的编号。
方法一:递归算法
1 function killMonkey($monkeys , $m , $current = 0){
2 $number = count($monkeys);
3 $num = 1;
4 if(count($monkeys) == 1){
5 echo $monkeys[0]."成为猴王了";
6 return;
7 }
8 else{
9 while($num++ < $m){
10 $current++ ;
11 $current = $current%$number;
12 }
13 echo $monkeys[$current]."的猴子被踢掉了<br/>";
14 array_splice($monkeys , $current , 1);
15 killMonkey($monkeys , $m , $current);
16 }
17 }
18 $monkeys = array(1 , 2 , 3 , 4 , 5 , 6 , 7, 8 , 9 , 10); //monkeys的编号
19 $m = 3; //数到第几只猴子被踢出
20 killMonkey($monkeys , $m);
方法二:线性表应用
最后这个算法最牛,
哦,是这样的,每个猴子出列后,剩下的猴子又组成了另一个子问题。只是他们的编号变化了。第一个出列的猴子肯定是a[1]=m(mod)n(m/n的余数),他除去后剩下的猴子是a[1]+1,a[1]+2,…,n,1,2,…a[1]-2,a[1]-1,对应的新编号是1,2,3…n-1。设此时某个猴子的新编号是i,他原来的编号就是(i+a[1])%n。于是,这便形成了一个递归问题。假如知道了这个子问题(n-1个猴子)的解是x,那么原问题(n个猴子)的解便是:(x+m%n)%n=(x+m)%n。问题的起始条件:如果n=1,那么结果就是1。
1 function yuesefu($n,$m) {
2 $r=0;
3 for($i=2; $i<=$n; $i++) {
4 $r=($r+$m)%$i;
5 }
6 return $r+1;
7 }
8 echo yuesefu(10,3)."是猴王";
php解决约瑟夫环的更多相关文章
- 用pl/sql游标实现约瑟夫环
什么是约瑟夫环: 约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为1的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数, ...
- Java实现约瑟夫环
什么是约瑟夫环呢? 约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个 ...
- poj 3517 约瑟夫环
最简单的约瑟夫环,虽然感觉永远不会考约瑟夫环,但数学正好刷到这部分,跳过去的话很难过 直接粘别人分析了 约瑟夫问题: 用数学方法解的时候需要注意应当从0开始编号,因为取余会等到0解. 实质是一个递推, ...
- C++ 约瑟夫环
约瑟夫环: 已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,直到圆桌周 ...
- 51nod 1073 约瑟夫环
题目链接 先说一下什么是约瑟夫环,转自:传送门 关于约瑟夫环问题,无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大( ...
- 通过例子进阶学习C++(七)CMake项目通过模板库实现约瑟夫环
本文是通过例子学习C++的第七篇,通过这个例子可以快速入门c++相关的语法. 1.问题描述 回顾一下约瑟夫环问题:n 个人围坐在一个圆桌周围,现在从第 s 个人开始报数,数到第 m 个人,让他出局:然 ...
- POJ-2886 Who Gets the Most Candies?---线段树+约瑟夫环
题目链接: https://cn.vjudge.net/problem/POJ-2886 题目大意: N个人围成一圈第一个人跳出圈后会告诉你下一个谁跳出来跳出来的人(如果他手上拿的数为正数,从他左边数 ...
- 约瑟夫环C#解决方法
/*约瑟夫环 (问题描述) 约瑟夫问题的一种描述是:编号为1,2,......n,的n个人按顺时针方向围坐一圈,每个人持有一个密码(正整数).一开始任意选 一个正整数作为报数的上限值m,从第一个人开始 ...
- "递归"实现"约瑟夫环","汉诺塔"
一:约瑟夫环问题是由古罗马的史学家约瑟夫提出的,问题描述为:编号为1,2,-.n的n个人按顺时针方向围坐在一张圆桌周围,每个人持有一个密码(正整数),一开始任选一个正整数作为报数上限值m,从第一个人开 ...
随机推荐
- 基于Jira的运维发布平台的设计与实现
作者:乔克 公众号:运维开发故事 上线发布是运维的日常工作,常见的发布方式有: 手动发布 Jenkins发布平台 Gitlab CI ...... 除此之外还有需要开源软件,他们都有非常不错的发布管理 ...
- MongoDB(8)- 文档删除操作
删除方法 db.collection.deleteOne() 删除单条文档 db.collection.deleteMany() 删除多条文档 db.collection.remove() 删除单条或 ...
- Spring AOP开发时如何得到某个方法内调用的方法的代理对象?
Spring AOP开发时如何得到某个方法内调用的方法的代理对象? 问题阅读起来拗口,看代码 在方法中调用其他方法很常见,也经常使用,如果在一个方法内部调用其他方法,比如 public class U ...
- Nginx_学习笔记
Nginx_学习笔记 01-Nginx 课程介绍 02-Nginx 的简介 1. 什么是 Nginx ? 03-Nginx 相关概念(正向和反向代理) 1. 什么是反向代理?能否简要画出其示意图 2. ...
- Go语言的函数01---概念
package main import "fmt" /* 向某人致以问候 参数: name string类型,要问候的对象 n int类型,要问候的次数 返回值: string类型 ...
- RMAN CROSSCHECK命令 说明
CROSSCHECK命令: 用于核对磁盘和磁带上的备份文件,以确保RMAN资料库与备份文件保持同步.注意:该命令只会检查RMAN资料库所记载的备份文件.当执行crosscheck命令时,如果资 ...
- 面阿里P7,竟问这么简单的题目?
关于作者:程序猿石头(ID: tangleithu),来自十八县贫困农村(查看我的逆袭之路),BAT某厂P7,是前大疆(无人机)技术主管,曾经也在创业公司待过,有着丰富的经验. 本文首发于微信公众号, ...
- MindSpore平台系统类
MindSpore平台系统类 Q:MindSpore只能在华为自己的NPU上跑么? A: MindSpore同时支持华为自己的Ascend NPU.GPU与CPU,是支持异构算力的. Q:MindSp ...
- Django框架之路由层汇总
一 Django中路由的作用 URL配置(URLconf)就像Django 所支撑网站的目录.它的本质是URL与要为该URL调用的视图函数之间的映射表:你就是以这种方式告诉Django,对于客户端发来 ...
- Android客户端网络预连接优化机制探究
一.背景 一般情况下,我们都是用一些封装好的网络框架去请求网络,对底层实现不甚关注,而大部分情况下也不需要特别关注处理.得益于因特网的协议,网络分层,我们可以只在应用层去处理业务就行.但是了解底层的一 ...