linux驱动之获取设备树信息
上一篇文章学习了字符设备的注册,操作过的小伙伴都知道上一篇文章中测试驱动时是通过手动创建设备节点的,现在开始学习怎么自动挂载设备节点和设备树信息的获取,这篇文章中的源码将会是我以后编写字符驱动的模板。
一、准备材料
开发环境:VMware
操作系统:ubuntu
开发版:湃兔i2S-6UB
库文件:linux开发板或ubuntu的内核源码
二、自动创建设备节点
需要用到的头文件 #include <linux/device.h>,需要用到的函数如下所示
struct class *class_create(owner, name)
void class_destroy(struct class *class)
struct device *device_create(struct class *class, struct device *parent, dev_t devt, void *drvdata, const char *fmt, ...)
void device_destroy(struct class *class, dev_t devt);
owner: THIS_MODULE
name: 设备节点的名称(也就是/dev目录下的文件名)
class:类
parent:NULL
devt:设备号
drvdata:NULL
fmt:设备节点的名称
三、获取设备树信息
为了帮助像我一样才接触linux驱动,对设备树不是很理解的小伙伴,所系这里就不对设备树进行详细的介绍。可以将设备树简单的理解为,设备树的存在是方便linux内核研究人员专心的研究内核的功能,通过设备树将板载的描述文件和内核分开,使得内核文件不在臃肿。有需要的小伙伴可以了解Device Tree。
设备树文件在内核源码的“arch/arm/boot/dts”目录下,设备树的描述文件是'.dtsi',每个开发板对应的文件不同,比如我的开发板的描述文件是i2c6ulxb-i2s6ull-emmc.dtsi,打开可以看到的信息如图所示:
在这里我就不对设备进行更改了,我对backlight节点信息进行读取,有需要了解设备树语法的小伙伴可以了解Linux设备树语法详解。
我在驱动中读取设备树的主要函数有以下几个,想了解更多of函数的小伙伴可以了解linux设备树常用of操作函数。
inline struct device_node *of_find_node_by_path(const char *path)
int of_property_read_string(struct device_node *nd, const char *propname, const char *out_string);
int of_property_read_u32_array(struct device_node *nd, const char *propname, u32 *out_value)
path:带有全路径的节点名,可以使用节点的别名
np:设备节点
proname 要读取的属性名字
out_string:读取到的字符串值
out_value:读取到的数组值
通过这几个函数,就可以将设备树种的信息的读取出来了,接下载看源码
四、程序源码
驱动文件chrdevtemp.c
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#define CHRDEVTEMP_NAME "chrdevtemp"
#define CHRDEVTEMP_COUNT 1
/* 设备结构体 */
struct chrtemp_dev{
dev_t devid; /* 设备号 */
int major; /* 主设备号 */
int minor; /* 次设备号 */
struct cdev cdev; /* 字符设备 */
struct class *class; /* 类结构体 */
struct device *device; /* 设备 */
struct device_node *nd; /* 设备节点 */
int gpio_number; /*gpio的编号*/
};
struct chrtemp_dev chrdevtemp;
static char readbuf[100];
static char writebuf[100];
static char kerneldata[] = {"hello This is the kernel data"};
static int chrdevtemp_open(struct inode *inode, struct file *filp)
{
filp->private_data = &chrdevtemp;
return 0;
}
static int chrdevtemp_release(struct inode *inode, struct file *filp)
{
return 0;
}
static ssize_t chrdevtemp_read(struct file *filp, __user char *buf, size_t count, loff_t *ppos)
{
int ret = 0;
memcpy(readbuf, kerneldata, sizeof(kerneldata));
ret = copy_to_user(buf, readbuf, count);
if (ret == 0) {
} else {
}
return 0;
}
static ssize_t chrdevtemp_write(struct file *filp, const char __user *buf, size_t count, loff_t *ppos)
{
int ret = 0;
ret = copy_from_user(writebuf, buf, count);
if (ret == 0) {
printk("kernel recevdata:%s\r\n", writebuf);
} else {
}
return 0;
}
/*
* 字符设备操作集合
*/
static const struct file_operations chrdevtemp_fops = {
.owner = THIS_MODULE,
.open = chrdevtemp_open,
.release = chrdevtemp_release,
.read = chrdevtemp_read,
.write = chrdevtemp_write,
};
/*
* 模块入口
*/
static int __init chrdevtemp_init(void)
{
int ret = 0;
const char *str;
u32 brightness[8];
u8 i;
printk("chrdevtemp_init\r\n");
/* 申请设备号 */
chrdevtemp.major = 0; /* 设置设备号由内存分配 */
if (chrdevtemp.major){
chrdevtemp.devid = MKDEV(chrdevtemp.major, 0);
ret = register_chrdev_region(chrdevtemp.devid, CHRDEVTEMP_COUNT, CHRDEVTEMP_NAME);
} else {
ret = alloc_chrdev_region(&chrdevtemp.devid, 0, CHRDEVTEMP_COUNT, CHRDEVTEMP_NAME);
chrdevtemp.major = MAJOR(chrdevtemp.devid);
chrdevtemp.minor = MINOR(chrdevtemp.devid);
}
if (ret < 0) {
printk("chrdevtemp chrdev_region err!\r\n");
goto fail_devid;
}
/* 注册字符设备 */
chrdevtemp.cdev.owner = chrdevtemp_fops.owner;
cdev_init(&chrdevtemp.cdev, &chrdevtemp_fops);
ret = cdev_add(&chrdevtemp.cdev, chrdevtemp.devid, CHRDEVTEMP_COUNT);
if (ret < 0) {
goto fail_cdev;
}
/* 自动创建设备节点 */
chrdevtemp.class = class_create(THIS_MODULE, CHRDEVTEMP_NAME);
if (IS_ERR(chrdevtemp.class)) {
ret = PTR_ERR(chrdevtemp.class);
goto fail_class;
}
chrdevtemp.device = device_create(chrdevtemp.class, NULL, chrdevtemp.devid, NULL, CHRDEVTEMP_NAME);
if (IS_ERR(chrdevtemp.device)) {
ret = PTR_ERR(chrdevtemp.device);
goto fail_device;
}
/* 获取设备树的属性内容 */
chrdevtemp.nd = of_find_node_by_path("/backlight");
if (chrdevtemp.nd == NULL) {
ret = -EINVAL;
goto fail_findnd;
}
/* 获取字符串属性 */
ret = of_property_read_string(chrdevtemp.nd, "compatible", &str);
if (ret < 0) {
goto fail_rs;
} else {
printk("status is: %s\r\n", str);
}
/* 获取数组 */
ret = of_property_read_u32_array(chrdevtemp.nd, "brightness-levels", brightness, 8);
if (ret < 0) {
goto fail_rs;
} else {
printk("brightness-levels: ");
for(i = 0; i < 8; i++){
printk("%d ", brightness[i]);
}
printk("\r\n");
}
return 0;
fail_rs:
fail_findnd:
device_destroy(chrdevtemp.class, chrdevtemp.devid);
fail_device:
class_destroy(chrdevtemp.class);
fail_class:
cdev_del(&chrdevtemp.cdev);
fail_cdev:
unregister_chrdev_region(chrdevtemp.devid, CHRDEVTEMP_COUNT);
fail_devid:
return ret;
}
/*
* 模块出口
*/
static void __exit chrdevtemp_exit(void)
{
printk("chrdevtemp_exit\r\n");
/* 删除字符设备 */
cdev_del(&chrdevtemp.cdev);
/* 释放字符设号 */
unregister_chrdev_region(chrdevtemp.devid, CHRDEVTEMP_COUNT);
/* 摧毁设备 */
device_destroy(chrdevtemp.class, chrdevtemp.devid);
/* 摧毁类 */
class_destroy(chrdevtemp.class);
}
/*
* 模块注册入口
*/
module_init(chrdevtemp_init);
/*
* 模块注册出口
*/
module_exit(chrdevtemp_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("jiaozhu");
Makefile文件
KERNELDIR := /home/xfg/linux/imx_7ull/i2x_6ub/system_file/i2SOM-iMX-Linux
CURRENT_PATH := $(shell pwd)
obj-m := chrdevtemp.o
build: kernel_modules
kernel_modules:
$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) modules
clean:
$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean
测试程序需就使用之前编写的hello2App.c文件
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
/*
*argc:应用程序参数个数
*argv[]:具体的参数内容,字符串形式
*./hello2App <filename> <1:2> 1表示读,2表示写
*./hello2App /dev/hello2 1 表示从驱动里面读数据
*./hello2App /dev/hello2 2 表示向驱动里面写数据
* */
int main(int argc, char *argv[])
{
int ret = 0;
int fd = 0;
char *filename;
char readbuf[100], writebuf[100];
static char usrdata[] = {"hell0 This is user data!"};
if(argc !=3) {
printf("Instruction usage error!!!\r\n");
printf("./helle2App <filename> <1:2> 1表示读,2表示写\r\n");
printf("./hello2App ./dev/hello2 1 \r\n");
return -1;
}
filename = argv[1];
fd = open(filename, O_RDWR);
if(fd < 0) {
}
if(atoi(argv[2]) ==1){
ret = read(fd, readbuf, 50);
if(ret <0) {
printf("read file %s failed!\r\n", filename);
} else {
printf("App read data:%s\r\n", readbuf);
}
}
if(atoi(argv[2]) == 2) {
memcpy(writebuf, usrdata, sizeof(usrdata));
ret = write(fd,writebuf, 50);
if(ret <0) {
printf("write file %s failed\r\n", filename);
} else {
}
}
ret =close(fd);
if(ret <0) {
printf("close file %s falied!\r\n", filename);
}
return 0;
}
五、测试
将驱动文件和应用文件进行编译
make
arm-linux-gnueabihf-gcc
将编译后的驱动文件可应用文件拷贝到开发板中,然后加载驱动,结果如下图所示:
将读取的信息和设备树文件中的信息对比,说明读取成功。
通过应用读取设备节点,测试设备节点是否加载成功,结果如下图所示:
可知通过自动创界设备节点成功。
六、问题
1.自动创建设备节点时出现如下错误
解决办法:此错误是因为我运行的内核版本和写驱动是用的内核版本不一致导致,只需要控制版本一致后从新烧写内核文件即可。
参考文献
Device Tree:http://www.wowotech.net/device_model/why-dt.html
Linux设备树语法详解:https://www.cnblogs.com/xiaojiang1025/p/6131381.html
linux设备树常用of操作函数:https://blog.csdn.net/wang_518/article/details/108923399
linux驱动之获取设备树信息的更多相关文章
- Linux 获取设备树源文件(DTS)里描述的资源
Linux 获取设备树源文件(DTS)里的资源 韩大卫@吉林师范大学 在linux使用platform_driver_register() 注册 platform_driver 时, 需要在 plat ...
- Linux 获取设备树源文件(DTS)里的资源【转】
本文转载自:http://blog.csdn.net/keleming1/article/details/51036000 http://www.cnblogs.com/dyllove98/archi ...
- Linux kernel 有关 spi 设备树参数解析
一.最近做了一个 spi 设备驱动从板级设备驱动升级到设备树设备驱动,这其中要了解 spi 设备树代码的解析. 二. 设备树配置如下: 503 &spi0 { 504 status = &qu ...
- I.MX6 linux eGalaxTouch 自动获取设备节点
I.MX6 linux eGalaxTouch 自动获取设备节点 \\\\\\\\\\\\\\-*- 目录 -*-///////////// | 一. 需求: | 二. /proc/bus/input ...
- Linux 获取设备树源文件(DTS)里描述的资源【转】
转自:http://www.linuxidc.com/Linux/2013-07/86839.htm 转自:http://blog.sina.com.cn/s/blog_636a55070101mce ...
- Linux 总线、设备、驱动模型 与 设备树
1.总线.设备.驱动模型 本着高内聚.低耦合的原则,Linux 把设备驱动模型分为了总线.设备和驱动三个实体,这三个实体在内核里的职责分别如下: 设备和驱动向总线进行注册,总线负责把设备和对应的驱动绑 ...
- ARM Linux 3.x的设备树(Device Tree)
http://blog.csdn.net/21cnbao/article/details/8457546 宋宝华 Barry Song <21cnbao@gmail.com> 1. ...
- ARM Linux 3.x的设备树(Device Tree)
1. ARM Device Tree起源 Linus Torvalds在2011年3月17日的ARM Linux邮件列表宣称“this whole ARM thing is a f*cking pai ...
- Linux驱动设计——字符设备驱动(一)
Linux字符设别驱动结构 cdev结构体 struct cdev { struct kobject kobj; struct module *owner; const struct file_ope ...
随机推荐
- 爱心跳动效果 CSS实现
爱心跳动效果 CSS实现 实现效果 砰砰砰 实现原理 通过动画改变每个元素的高度,从而实现每个元素高度变化的效果,为了使每个元素依次跳动,给每个元素添加一定的延时效果,使得从效果元素依次跳动 代码分析 ...
- SystemVerilog MCDF验证结构
MCDF的设计和验证花费的时间:(工作中假设的时间) design cycle time ==10days how about 验证?verify? 模块越往上(大')验证花费的时间越来越大,但是 ...
- C# DeepClone 深拷贝
常规利用反射进行克隆 public static T CloneModel<T>(T oModel) { var oRes = default(T); var oType = typeof ...
- MongoDB(12)- 查询嵌入文档的数组
插入测试数据 db.inventory.insertMany( [ { item: "journal", instock: [ { warehouse: "A" ...
- TVM 高效保护隐私 ML
TVM 高效保护隐私 ML 这篇文章描述了Myelin,一个在值得信赖的硬件飞地中保护隐私的机器学习框架,以及TVM如何使Myelin快速.关键的想法是,TVM,不像其它流行的ML框架,将模型编译成轻 ...
- 如何使用TVM Pass红外线
如何使用TVM Pass红外线 随着Relay / tir中优化遍数的增加,执行并手动维护其依赖关系变得很棘手.引入了一个基础结构来管理优化过程,将其应用于TVM堆栈中IR的不同层. Relay / ...
- 第四代自动泊车从APA到AVP技术
第四代自动泊车从APA到AVP技术 前言 自动泊车是指汽车自动泊车入位不需要人工控制,系统能够自动帮你将车辆停入车位,在倒车入库中可谓是驾驶者的一项利器.当我们找到一个理想的停车地点,只需轻轻启动按钮 ...
- NSight Compute 用户手册(中)
NSight Compute 用户手册(中) NVIDIA Nsight Compute支持密码和私钥身份验证方法.在此对话框中,选择身份验证方法并输入以下信息: 密码 IP/主机名:目标设备的IP地 ...
- java后端知识点梳理——多线程与高并发
进程与线程 进程是一个"执行中的程序",是系统进行资源分配和调度的一个独立单位 线程是进程的一个实体,一个进程中一般拥有多个线程. 线程和进程的区别 进程是操作系统分配资源的最小单 ...
- WizTree——一个扫描快似Everything的硬盘空间分析工具
虽然我平时用的主要是Linux,但是由于实际环境是win10,对于磁盘资源的控制,我主要是通过Windows自带的文件资源管理器来查看的,但是显然这个工具不够直观.于是,我也被安利过SpaceSnif ...