引言

今天刷题时遇到了一个很奇怪的问题,我们知道java HashMap的扩容是有成本的,为了减少扩容的次数和成本,可以给HashMap设置初始容量大小,如下所示:

HashMap<String, Integer> map0 = new HashMap<String, Integer>(100000);

但是在实际使用的过程中,发现性能不但没有提升,反而显著下降了!代码里对HashMap的操作也只有遍历了,看来是遍历出了问题,于是做了一番测试,得到如下结果:

  • HashMap的迭代器遍历性能与 initial capacity 有关

迭代器测试

贴上测试代码:

public class MapForEachTest {

    public static void main(String[] args) {
HashMap<String, Integer> map0 = new HashMap<String, Integer>(100000); initDataAndPrint(map0); HashMap<String, Integer> map1 = new HashMap<String, Integer>(); initDataAndPrint(map1); } private static void initDataAndPrint(HashMap map) { initData(map); long start = System.currentTimeMillis(); for (int i = 0; i < 100; i++) {
forEach(map);
}
long end = System.currentTimeMillis();
System.out.println("");
System.out.println("HashMap Size: " + map.size() + " 耗时: " + (end - start) + " ms");
} private static void forEach(HashMap map) {
for (Iterator<Map.Entry<String, Integer>> it = map.entrySet().iterator(); it.hasNext();){
Map.Entry<String, Integer> item = it.next();
System.out.print(item.getKey());
// do something
} } private static void initData(HashMap map) {
map.put("a", 0);
map.put("b", 1);
map.put("c", 2);
map.put("d", 3);
map.put("e", 4);
map.put("f", 5);
} }

这是运行结果

我们将第一个Map初始化10w大小,第二个map不指定大小(实际16),两个存储相同的数据,但是用迭代器遍历100次的时候发现性能迥异,一个36ms一个4ms,实际上性能差距更大,这里的4ms是600次System.out.print的耗时,这里将print注掉再试下

for (Iterator<Map.Entry<String, Integer>> it = map.entrySet().iterator(); it.hasNext();){
Map.Entry<String, Integer> item = it.next();
// System.out.print(item.getKey());
// do something
}

输出结果如下:

可以发现第二个map耗时几乎为0,第一个达到了28ms,遍历期间没有进行任何操作,既然石锤了和 initial capacity 有关,下一步我们去看看为什么会这样,找找Map迭代器的源码看看。

迭代器源码探究

我们来看看Map.entrySet().iterator()的源码;

public final Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator();
}

其中EntryIterator是HashMap的内部抽象类,源码并不多,我全部贴上来并附上中文注释


abstract class HashIterator {
// 下一个Node
Node<K,V> next; // next entry to return
// 当前Node
Node<K,V> current; // current entry
// 预期的Map大小,也就是说每个HashMap可以有多个迭代器(每次调用 iterator() 会new 一个迭代器出来),但是只能有一个迭代器对他remove,否则会直接报错(快速失败)
int expectedModCount; // for fast-fail // 当前节点所在的数组下标,HashMap内部是使用数组来存储数据的,不了解的先去看看HashMap的源码吧
int index; // current slot HashIterator() {
// 初始化 expectedModCount
expectedModCount = modCount;
// 浅拷贝一份Map的数据
Node<K,V>[] t = table;
current = next = null;
index = 0;
// 如果 Map 中数据不为空,遍历数组找到第一个实际存储的素,赋值给next
if (t != null && size > 0) { // advance to first entry
do {} while (index < t.length && (next = t[index++]) == null);
}
} public final boolean hasNext() {
return next != null;
} final Node<K,V> nextNode() {
// 用来浅拷贝table,和别名的作用差不多,没啥用
Node<K,V>[] t;
// 定义一个e指存储next,并在找到下一值时返它自己
Node<K,V> e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException(); // 使current指向e,也就是next,这次要找的值,并且让next = current.next,一般为null
if ((next = (current = e).next) == null && (t = table) != null) {
do {} while (index < t.length && (next = t[index++]) == null);
}
return e;
} /**
* 删除元素,这里不讲了,调的是HashMap的removeNode,没啥特别的
**/
public final void remove() {
Node<K,V> p = current;
if (p == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = null;
K key = p.key;
removeNode(hash(key), key, null, false, false);
// 用来保证快速失败的
expectedModCount = modCount;
}
}

上面的代码一看就明白了,迭代器每次寻找下一个元素都会去遍历数组,如果 initial capacity 特别大的话,也就是说 threshold 也大,table.length就大,所以遍历比较耗性能。

table数组的大小设置是在resize()方法里:

Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;

其他遍历方法

注意代码里我们用的是Map.entrySet().iterator(),实际上和keys().iterator(), values().iterator() 一样,源码如下:

final class KeyIterator extends HashIterator
implements Iterator<K> {
public final K next() { return nextNode().key; }
} final class ValueIterator extends HashIterator
implements Iterator<V> {
public final V next() { return nextNode().value; }
} final class EntryIterator extends HashIterator
implements Iterator<Map.Entry<K,V>> {
public final Map.Entry<K,V> next() { return nextNode(); }
}

这两个就不分析了,性能一样。

实际使用中对集合的遍历还有几种方法:

  • 普通for循环+下标
  • 增强型for循环
  • Map.forEach
  • Stream.forEach

普通for循环+下标的方法不适用于Map,这里不讨论了。

增强型for循环

增强行for循环实际上是通过迭代器来实现的,我们来看两者的联系

源码:

private static void forEach(HashMap map) {
for (Iterator<Map.Entry<String, Integer>> it = map.entrySet().iterator(); it.hasNext();){
Map.Entry<String, Integer> item = it.next();
System.out.print(item.getKey());
// do something
}
} private static void forEach0(HashMap<String, Integer> map) {
for (Map.Entry entry : map.entrySet()) {
System.out.print(entry.getKey());
}
}

编译后的字节码:

// access flags 0xA
private static forEach(Ljava/util/HashMap;)V
L0
LINENUMBER 41 L0
ALOAD 0
INVOKEVIRTUAL java/util/HashMap.entrySet ()Ljava/util/Set;
INVOKEINTERFACE java/util/Set.iterator ()Ljava/util/Iterator; (itf)
ASTORE 1
L1
FRAME APPEND [java/util/Iterator]
ALOAD 1
INVOKEINTERFACE java/util/Iterator.hasNext ()Z (itf)
IFEQ L2
L3
LINENUMBER 42 L3
ALOAD 1
INVOKEINTERFACE java/util/Iterator.next ()Ljava/lang/Object; (itf)
CHECKCAST java/util/Map$Entry
ASTORE 2
L4
LINENUMBER 43 L4
GETSTATIC java/lang/System.out : Ljava/io/PrintStream;
ALOAD 2
INVOKEINTERFACE java/util/Map$Entry.getKey ()Ljava/lang/Object; (itf)
CHECKCAST java/lang/String
INVOKEVIRTUAL java/io/PrintStream.print (Ljava/lang/String;)V
L5
LINENUMBER 45 L5
GOTO L1
L2
LINENUMBER 46 L2
FRAME CHOP 1
RETURN
L6
LOCALVARIABLE item Ljava/util/Map$Entry; L4 L5 2
// signature Ljava/util/Map$Entry<Ljava/lang/String;Ljava/lang/Integer;>;
// declaration: item extends java.util.Map$Entry<java.lang.String, java.lang.Integer>
LOCALVARIABLE it Ljava/util/Iterator; L1 L2 1
// signature Ljava/util/Iterator<Ljava/util/Map$Entry<Ljava/lang/String;Ljava/lang/Integer;>;>;
// declaration: it extends java.util.Iterator<java.util.Map$Entry<java.lang.String, java.lang.Integer>>
LOCALVARIABLE map Ljava/util/HashMap; L0 L6 0
MAXSTACK = 2
MAXLOCALS = 3 // access flags 0xA
// signature (Ljava/util/HashMap<Ljava/lang/String;Ljava/lang/Integer;>;)V
// declaration: void forEach0(java.util.HashMap<java.lang.String, java.lang.Integer>)
private static forEach0(Ljava/util/HashMap;)V
L0
LINENUMBER 50 L0
ALOAD 0
INVOKEVIRTUAL java/util/HashMap.entrySet ()Ljava/util/Set;
INVOKEINTERFACE java/util/Set.iterator ()Ljava/util/Iterator; (itf)
ASTORE 1
L1
FRAME APPEND [java/util/Iterator]
ALOAD 1
INVOKEINTERFACE java/util/Iterator.hasNext ()Z (itf)
IFEQ L2
ALOAD 1
INVOKEINTERFACE java/util/Iterator.next ()Ljava/lang/Object; (itf)
CHECKCAST java/util/Map$Entry
ASTORE 2
L3
LINENUMBER 51 L3
GETSTATIC java/lang/System.out : Ljava/io/PrintStream;
ALOAD 2
INVOKEINTERFACE java/util/Map$Entry.getKey ()Ljava/lang/Object; (itf)
INVOKEVIRTUAL java/io/PrintStream.print (Ljava/lang/Object;)V
L4
LINENUMBER 52 L4
GOTO L1
L2
LINENUMBER 53 L2
FRAME CHOP 1
RETURN
L5
LOCALVARIABLE entry Ljava/util/Map$Entry; L3 L4 2
LOCALVARIABLE map Ljava/util/HashMap; L0 L5 0
// signature Ljava/util/HashMap<Ljava/lang/String;Ljava/lang/Integer;>;
// declaration: map extends java.util.HashMap<java.lang.String, java.lang.Integer>
MAXSTACK = 2
MAXLOCALS = 3

都不用耐心观察,两个方法的字节码除了局部变量不一样其他都几乎一样,由此可以得出增强型for循环性能与迭代器一样,实际运行结果也一样,我不展示了,感兴趣的自己去copy文章开头和结尾的代码试下。

还是贴上吧

Map.forEach

先说一下为什么不把各种方法一起运行同时打印性能,这是因为CPU缓存的原因和JVM的一些优化会干扰到性能的判断,附录全部测试结果有说明

直接来看源码吧

@Override
public void forEach(BiConsumer<? super K, ? super V> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e.key, e.value);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}

很简短的源码,就不打注释了,从源码我们不难获取到以下信息:

  • 该方法也是快速失败的,遍历期间不能删除元素
  • 需要遍历整个数组
  • BiConsumer加了@FunctionalInterface注解,用了 lambda

第三点和性能无关,这里只是提下

通过以上信息我们能确定这个性能与table数组的大小有关。

但是在实际测试的时候却发现性能比迭代器差了不少:

其中详细原因等我下期的文章吧,这里不讲了

Stream.forEach

Stream与Map.forEach的共同点是都使用了lambda表达式。但两者的源码没有任何复用的地方。

不知道你有没有看累,先上测试结果吧:

耗时比Map.foreach还要高点。

下面讲讲Straam.foreach顺序流的源码,这个也不复杂,不过累的话先去看看总结吧。

Stream.foreach的执行者是分流器,HashMap的分流器源码就在HashMap类中,是一个静态内部类,类名叫 EntrySpliterator

下面是顺序流执行的方法

public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
HashMap<K,V> m = map;
Node<K,V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = (tab == null) ? 0 : tab.length;
}
else
mc = expectedModCount;
if (tab != null && tab.length >= hi &&
(i = index) >= 0 && (i < (index = hi) || current != null)) {
Node<K,V> p = current;
current = null;
do {
if (p == null)
p = tab[i++];
else {
action.accept(p);
p = p.next;
}
} while (p != null || i < hi);
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
}

从以上源码中我们也可以轻易得出遍历需要顺序扫描所有数组

总结

至此,Map的四种遍历方法都测试完了,我们可以简单得出两个结论

  • Map的遍历性能与内部table数组大小有关,也就是说与常用参数 initial capacity 有关,不管哪种遍历方式都是的
  • 性能(由高到低):迭代器 == 增强型For循环 > Map.forEach > Stream.foreach

这里就不说什么多少倍多少倍的性能差距了,抛开数据集大小都是扯淡,当我们不指定initial capacity的时候,四种遍历方法耗时都是3ms,这3ms还是输入输出流的耗时,实际遍历耗时都是0,所以数据集不大的时候用哪种都无所谓,就像不加输入输出流耗时不到1ms一样,很多时候性能消耗是在遍历中的业务操作,这篇文章不是为了让你去优化代码把foreach改成迭代器的,在大多数场景下并不需要关注迭代本身的性能,Stream与Lambda带来的可读性提升更加重要。

所以此文的目的就当是知识拓展吧,除了以上说到的遍历性能问题,你还应该从中能获取到的知识点有:

  • HashMap的数组是存储在table数组里的
  • table数组是resize方法初始化的,new Map不会初始化数组
  • Map遍历是table数组从下标0递增排序的,所以他是无序的
  • keySet().iterator,values.iterator, entrySet.iterator 来说没有本质区别,用的都是同一个迭代器
  • 各种遍历方法里,只有迭代器可以remove,虽然增强型for循环底层也是迭代器,但这个语法糖隐藏了 remove 方法
  • 每次调用迭代器方法都会new 一个迭代器,但是只有一个可以修改
  • Map.forEach与Stream.forEach看上去一样,实际实现是不一样的

附:四种遍历源码

private static void forEach(HashMap map) {
for (Iterator<Map.Entry<String, Integer>> it = map.entrySet().iterator(); it.hasNext();){
Map.Entry<String, Integer> item = it.next();
// System.out.print(item.getKey());
// do something
}
} private static void forEach0(HashMap<String, Integer> map) {
for (Map.Entry entry : map.entrySet()) {
System.out.print(entry.getKey());
}
} private static void forEach1(HashMap<String, Integer> map) {
map.forEach((key, value) -> {
System.out.print(key);
}); } private static void forEach2(HashMap<String, Integer> map) {
map.entrySet().stream().forEach(e -> {
System.out.print(e.getKey());
}); }

附:完整测试类与测试结果+一个奇怪的问题

代码很丑,不要介意


public class MapForEachTest { public static void main(String[] args) {
HashMap<String, Integer> map0 = new HashMap<String, Integer>(100000);
HashMap<String, Integer> map1 = new HashMap<String, Integer>();
initData(map0);
initData(map1); testIterator(map0);
testIterator(map1);
testFor(map0);
testFor(map1);
testMapForeach(map0);
testMapForeach(map1);
testMapStreamForeach(map0);
testMapStreamForeach(map1); } private static void testIterator(HashMap map) { long start = System.currentTimeMillis(); for (int i = 0; i < 100; i++) {
forEach(map);
}
long end = System.currentTimeMillis();
System.out.println("");
System.out.println("HashMap Size: " + map.size() + " 迭代器 耗时: " + (end - start) + " ms");
} private static void testFor(HashMap map) { long start = System.currentTimeMillis(); for (int i = 0; i < 100; i++) {
forEach0(map);
}
long end = System.currentTimeMillis();
System.out.println("");
System.out.println("HashMap Size: " + map.size() + " 增强型For 耗时: " + (end - start) + " ms");
} private static void testMapForeach(HashMap map) { long start = System.currentTimeMillis(); for (int i = 0; i < 100; i++) {
forEach1(map);
}
long end = System.currentTimeMillis();
System.out.println("");
System.out.println("HashMap Size: " + map.size() + " MapForeach 耗时: " + (end - start) + " ms");
} private static void testMapStreamForeach(HashMap map) { long start = System.currentTimeMillis(); for (int i = 0; i < 100; i++) {
forEach2(map);
}
long end = System.currentTimeMillis();
System.out.println("");
System.out.println("HashMap Size: " + map.size() + " MapStreamForeach 耗时: " + (end - start) + " ms");
} private static void forEach(HashMap map) {
for (Iterator<Map.Entry<String, Integer>> it = map.entrySet().iterator(); it.hasNext();){
Map.Entry<String, Integer> item = it.next();
System.out.print(item.getKey());
// do something
}
} private static void forEach0(HashMap<String, Integer> map) {
for (Map.Entry entry : map.entrySet()) {
System.out.print(entry.getKey());
}
} private static void forEach1(HashMap<String, Integer> map) {
map.forEach((key, value) -> {
System.out.print(key);
}); } private static void forEach2(HashMap<String, Integer> map) {
map.entrySet().stream().forEach(e -> {
System.out.print(e.getKey());
}); } private static void initData(HashMap map) {
map.put("a", 0);
map.put("b", 1);
map.put("c", 2);
map.put("d", 3);
map.put("e", 4);
map.put("f", 5);
} }

测试结果:

如果你认真看了上面的文章的话,会发现测试结果有个不对劲的地方:

MapStreamForeach的耗时似乎变少了

我可以告诉你这不是数据的原因,从我的测试测试结果来看,直接原因是因为先执行了 Map.foreach,如果你把 MapForeach 和 MapStreamForeach 调换一下执行顺序,你会发现后执行的那个耗时更少。 至于这个问题的根本的原因,你有兴趣可以自己探索下,或者等我之后的文章

HashMap源码:聊聊Map的遍历性能问题(一)的更多相关文章

  1. 死磕Java之聊聊HashMap源码(基于JDK1.8)

    死磕Java之聊聊HashMap源码(基于JDK1.8) http://cmsblogs.com/?p=4731 为什么面试要问hashmap 的原理

  2. HashMap 源码详细分析(JDK1.8)

    一.概述 本篇文章我们来聊聊大家日常开发中常用的一个集合类 - HashMap.HashMap 最早出现在 JDK 1.2中,底层基于散列算法实现.HashMap 允许 null 键和 null 值, ...

  3. HashMap源码解读(JDK1.7)

    哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,而HashMap的实现原理也常常出 ...

  4. 一、基础篇--1.2Java集合-HashMap源码解析

    https://www.cnblogs.com/chengxiao/p/6059914.html  散列表 哈希表是根据关键码值而直接进行访问的数据结构.也就是说,它能通过把关键码值映射到表中的一个位 ...

  5. HashMap 源码解析

    HashMap简介: HashMap在日常的开发中应用的非常之广泛,它是基于Hash表,实现了Map接口,以键值对(key-value)形式进行数据存储,HashMap在数据结构上使用的是数组+链表. ...

  6. JAVA源码分析-HashMap源码分析(一)

    一直以来,HashMap就是Java面试过程中的常客,不管是刚毕业的,还是工作了好多年的同学,在Java面试过程中,经常会被问到HashMap相关的一些问题,而且每次面试都被问到一些自己平时没有注意的 ...

  7. Java集合---HashMap源码剖析

    一.HashMap概述二.HashMap的数据结构三.HashMap源码分析     1.关键属性     2.构造方法     3.存储数据     4.调整大小 5.数据读取           ...

  8. 【转】Java HashMap 源码解析(好文章)

    ­ .fluid-width-video-wrapper { width: 100%; position: relative; padding: 0; } .fluid-width-video-wra ...

  9. 给jdk写注释系列之jdk1.6容器(4)-HashMap源码解析

    前面了解了jdk容器中的两种List,回忆一下怎么从list中取值(也就是做查询),是通过index索引位置对不对,由于存入list的元素时安装插入顺序存储的,所以index索引也就是插入的次序. M ...

随机推荐

  1. Laravel打印sql日志

    直接打印 use Log; use DB; DB::connection()->enableQueryLog(); Log::info(DB::getQueryLog()); //print_r ...

  2. hdu1358 最小循环节,最大循环次数 KMP

    题意:       给你一个字符串,让你找到一些字符串,这个字符串是从第一个字母开始的,并且他可以分成1个一上循环子结构够成的,比如 abcabcabc  那么当前的这个串就是三个abc构成的,他的A ...

  3. Building Fire Stations 39届亚洲赛牡丹江站B题

    题意:      给你一棵树,让你再里面选取两个点作为**点,然后所有点的权值是到这两个点中最近的那个的距离,最后问距离中最长的最短是多少,输出距离还有那两个点(spj特判). 思路:      现场 ...

  4. hdu5253最小生成树

    题意:(中文题,直接粘过来吧)                                                                              连接的管道   ...

  5. 在AWS Glue中使用Apache Hudi

    1. Glue与Hudi简介 AWS Glue AWS Glue是Amazon Web Services(AWS)云平台推出的一款无服务器(Serverless)的大数据分析服务.对于不了解该产品的读 ...

  6. 【小技巧】启动Tomcat 提示端口被占用 怎么办?一句命令解决

    windows环境: 方法1: 1.win+r 打开黑界面 2.输入命令 netstat -ano|findstr 8080 3.输入命令 taskkill /pid xxxx /f Linux环境: ...

  7. QFNU-11.08training

    7-1  阅览室 题目: 天梯图书阅览室请你编写一个简单的图书借阅统计程序.当读者借书时,管理员输入书号并按下S键,程序开始计时:当读者还书时,管理员输入书号并按下E键,程序结束计时.书号为不超过10 ...

  8. .Net Core——用代码写代码?

    想要用代码写代码,肯定是绕不开反射的.反射的概念相比都不陌生,只是应用多少就因人而异,今天分享一个代码生成器的思路,仅供参考,不要过分依赖哦. 思路分析 众所周知,利用反射可以在程序运行时获取到任一对 ...

  9. 移动应用开发 第5讲 Activity课堂综合练习

    作业总要求使用附件"素材"压缩包中的素材完成下列任务: 1.完成小游戏主程序,如图mainActivity.png. 2.在主程序界面当按下游戏介绍按钮时进行游戏介绍界面如图gam ...

  10. [bug] mysql:Unknown system variable 'tx_isolation'

    原因: 电脑上安装mysql与jdbc驱动mysql-connector-java.jar版本不匹配 解决: 导入与mysql版本匹配的mysql-connector-java.jar即可