主成分分析法(PCA)原理和步骤

主成分分析(Principal Component Analysis,PCA)是一种多变量统计方法,它是最常用的降维方法之一,通过正交变换将一组可能存在相关性的变量数据,转换为一组线性不相关的变量,转换后的变量被称为主成分。

可以使用两种方法进行 PCA,分别是特征分解或奇异值分解(SVD)。

准备工作

PCA 将 n 维输入数据缩减为 r 维,其中 r<n。简单地说,PCA 实质上是一个基变换,使得变换后的数据有最大的方差,也就是通过对坐标轴的旋转和坐标原点的平移,使得其中一个轴(主轴)与数据点之间的方差最小,坐标转换后去掉高方差的正交轴,得到降维数据集。

这里使用 SVD 方法进行 PCA 降维,假定有 p×n 维数据样本 X,共有 p 个样本,每行是 n 维,p×n 实矩阵可以分解为:

这里,正交阵 U 的维数是 p×n,正交阵 V 的维数是 n×n(正交阵满足:UUT=VTV=1),Σ 是 n×n 的对角阵。接下来,将 Σ 分割成 r 列,记作 Σr;利用 U 和 V 便能够得到降维数据点 Yr

具体做法

  1. 导入所需的模块,除了 TensorFlow,还需要 numpy 进行基本的矩阵计算,用 matplotlib、mpl_toolkit 和 seaborn 绘制图形:

  1. 加载数据集,此处使用常用的 MNIST 数据集:                                                                                                                                                       
  2. 定义类 TF_PCA,此类初始化如下:                                                                                                     
  3. 定义 fit 函数,计算输入数据的 SVD。定义计算图,以此计算奇异值和正交矩阵 U,self._X 以占位符的形式读入数据 self.data,tf.svd 以递减顺序返回形状为 [...,p] 的奇异值 s(singular_values),然后使用 tf.diag 将奇异值转换为对角矩阵:                                                                                                                                      
  4. 现在有了 sigma 矩阵、正交矩阵 U 和奇异值,下面定义 reduce 函数来计算降维数据。该方法需要 n_dimensions 和 keep_info 两个输入参数之一,n_dimensions 参数表示在降维数据中保持的维数,keep_info 参数表示保留信息的百分比(0.8意味着保持 80% 的原始数据)。该方法创建一个计算图,对 sigma 矩阵进行分割并计算降维数据集 YrTF_PCA 类已经准备就绪,下面会将 MNIST 的每个输入数据从维度为 784(28×28)减小到每个维度为 3。在这里为了对比效果只保留了 10% 的信息,但通常情况下需要保留大约 80% 的信息:TF_PCA 类已经准备就绪,下面会将 MNIST 的每个输入数据从维度为 784(28×28)减小到每个维度为 3。在这里为了对比效果只保留了 10% 的信息,但通常情况下需要保留大约 80% 的信息:
  5.       TF_PCA 类已经准备就绪,下面会将 MNIST 的每个输入数据从维度为 784(28×28)减小到每个维度为 3。在这里为了对比效果只保留了 10% 的信息,但通常情况下需要保留大约 80% 的信息:                                                                                                                                                 

代码输出如下:

  1. 绘制三维空间中的 55000 个数据点:

解读分析

前面的代码对 MNIST 图像进行了降维操作。原图的大小为 28×28,利用 PCA 方法把尺寸压缩得更小。通常在图像处理中经常用到降维操作,因为太大的图像尺寸包含大量的冗余数据。

TensorFlow 中的 embeddings 技术可以实现从对象到向量的映射,TensorBoard 中的 Embedding Projector 可以交互式地对模型的 embeddings 进行可视化,并提供了三种降维的方法:PCA、t-SNE 和自定义方式,可以使用 Embeddings Projector 来得到与上面类似的结果。

这需要从
tensorflow.contrib.tensorboard.plugins 中导入 projector,并且通过简单的三个步骤就可以完成:

  1. 加载数据:                                                                                                                                           
  2. 新建一个 metadata 文件(用制表符分隔的 .tsv 文件):                                                                                                                                  

  3. embeddings 保存在 Log_DIR 中:



    现在就可以使用 TensorBoard 查看 embeddings 了,通过命令行 tensorboard--logdir=log,在 Web 浏览器中打开 TensorBoard,然后进入 EMBEDDINGS 选项卡。下图显示的就是使用 PCA 方法运算的前三个主成分为轴的 TensorBoard 投影:

主成分分析法(PCA)原理和步骤的更多相关文章

  1. 主成分分析法PCA原理

    PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...

  2. 【笔记】主成分分析法PCA的原理及计算

    主成分分析法PCA的原理及计算 主成分分析法 主成分分析法(Principal Component Analysis),简称PCA,其是一种统计方法,是数据降维,简化数据集的一种常用的方法 它本身是一 ...

  3. 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA)

    主要内容: 一.降维与PCA 二.PCA算法过程 三.PCA之恢复 四.如何选取维数K 五.PCA的作用与适用场合 一.降维与PCA 1.所谓降维,就是将数据由原来的n个特征(feature)缩减为k ...

  4. 【机器学习】主成分分析法 PCA (II)

    主成分分析法(PAC)的优化——选择主成分的数量 根据上一讲,我们知道协方差为① 而训练集的方差为②. 我们希望在方差尽可能小的情况下选择尽可能小的K值. 也就是说我们需要找到k值使得①/②的值尽可能 ...

  5. 特征脸是怎么提取的之主成分分析法PCA

    机器学习笔记 多项式回归这一篇中,我们讲到了如何构造新的特征,相当于对样本数据进行升维. 那么相应的,我们肯定有数据的降维.那么现在思考两个问题 为什么需要降维 为什么可以降维 第一个问题很好理解,假 ...

  6. 【机器学习】主成分分析法 PCA (I)

    主成分分析算法是最常见的降维算法,在PCA中,我们要做的是找到一个方向向量,然后我们把所有的数都投影到该向量上,使得投影的误差尽可能的小.投影误差就是特征向量到投影向量之间所需要移动的距离. PCA的 ...

  7. 主成分分析法(PCA)答疑

    问:为什么要去均值? 1.我认为归一化的表述并不太准确,按统计的一般说法,叫标准化.数据的标准化过程是减去均值并除以标准差.而归一化仅包含除以标准差的意思或者类似做法.2.做标准化的原因是:减去均值等 ...

  8. 主成分分析(PCA)原理及R语言实现

    原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及 ...

  9. 主成分分析(PCA)原理及R语言实现 | dimension reduction降维

    如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么 ...

  10. 降维之主成分分析法(PCA)

    一.主成分分析法的思想 我们在研究某些问题时,需要处理带有很多变量的数据,比如研究房价的影响因素,需要考虑的变量有物价水平.土地价格.利率.就业率.城市化率等.变量和数据很多,但是可能存在噪音和冗余, ...

随机推荐

  1. hdu2056 矩形重叠面积(水题)

    题意:       给你两个矩形,问你他们的重叠面积是多少. 思路:      这两个矩形是平行x和y轴的,所以水题,不解释. #include<stdio.h> typedef stru ...

  2. CVE-2010-2883:基于样本分析 PDF SING表字符溢出漏洞

    0x01 前言 CVE-2010-2883 漏洞的成因是由于 CoolType.dll 这个动态链接库在解析 SING 表中的 uniqueName 这个项时没有对长度进行限制,导致使用 strcat ...

  3. React-组合模式

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <title&g ...

  4. Android 面试必备 - 系统、App、Activity 启动过程“一锅端”

    Android 系统启动过程 从系统层看: linux 系统层 Android系统服务层 Zygote 从开机启动到Home Launcher: 启动bootloader (小程序:初始化硬件) 加载 ...

  5. 【python】Leetcode每日一题-最长公共子序列

    [python]Leetcode每日一题-最长公共子序列 [题目描述] 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度.如果不存在 公共子序列 ,返回 0 . ...

  6. PHP 通用格式化调试函数

    /** * 打印调试函数 * @param $content * @param $is_die */function pre($content, $is_die = true){ header('Co ...

  7. 关于HTTP的一些概念

    各种概念 HTTP HTTP(HyperText Transfer Protocol) -- 超文本传输协议 它可以拆成三个部分:"超文本"."传输".&quo ...

  8. 改善c++程序的150个建议(读后总结)-------27-35

    27. 区分内存分配的方式 c++中内存分为5个不同的区 ①栈区 栈是一种特殊的数据结构,其存取数据特点为(先进后出,后进先出).栈区中主要用于存储一些函数的入口地址,函数调用时的实参值以及局部变量. ...

  9. 04.06 UCF Local Programming Contest 2017

    A.Electric Bill 题意:简单计算题,超过1000部分额外算 1 #include<stdio.h> 2 int main(){ 3 int money1,money2; 4 ...

  10. 深度理解Python迭代器

    迭代器 迭代是什么 迭代指的是一个重复的过程,每次重复都必须基于上一次的结果而继续,单纯的重复并不是迭代,如Python中的for循环就是一个非常好的迭代例子. for item in range(1 ...