Python数模笔记-Sklearn(1) 介绍
1、SKlearn 是什么
Sklearn(全称 SciKit-Learn),是基于 Python 语言的机器学习工具包。
Sklearn 主要用Python编写,建立在 Numpy、Scipy、Pandas 和 Matplotlib 的基础上,也用 Cython编写了一些核心算法来提高性能。
Sklearn 包括六大功能模块:
分类(Classification):识别样本属于哪个类别,常用算法有 SVM(支持向量机)、nearest neighbors(最近邻)、random forest(随机森林)
回归(Regression):预测与对象相关联的连续值属性,常用算法有 SVR(支持向量机)、 ridge regression(岭回归)、Lasso
聚类(Clustering):对样本进行无监督的自动分类,常用算法有 k-Means(k均值)、spectral clustering(特征聚类)、mean-shift(均值漂移)
数据降维(Dimensionality reduction):减少相关变量维数,常用算法有 PCA(主成分分析)、feature selection(特征选择)、non-negative matrix factorization(非负矩阵分解)
模型选择(Model Selection):比较,验证,选择参数和模型,常用模块有 grid search(网格搜索)、cross validation(交叉验证)、 metrics(度量)
数据处理 (Preprocessing):特征提取和归一化,常用模块有 preprocessing(预处理),feature extraction(特征提取)
这六个功能模块涉及 4类算法,分类、回归 属于监督学习,聚类属于非监督学习。


官网地址:https://scikit-learn.org/
官方文档中文版: https://www.scikitlearn.com.cn/
内置数据集:https://scikit-learn.org/stable/datasets.html
2、SKlearn 的安装
Sklearn 的安装要求:Python 3.5 以上版本,需要安装 NumPy、SciPy、Pandas 工具包的支持,部分内容需要使用 Matplotlib、joblib 工具包。
pip 安装命令:
pip3 install -U scikit-learn
pip3 install -U scikit-learn -i https://pypi.douban.com/simple
注意 Sklearn 建议安装 Numpy+mkl,可以在网址http://www.lfd.uci.edu/~gohlke/pythonlibs/ 找到你需要的numpy+mkl版本,下载后 pip3安装:
pip install numpy-1.11.1+mkl-cp27-cp27m-win_amd64.whl
3、SKlearn 内置数据集
Sklearn 内置了一些标准数据集可以用于练习和测试,都是经常被引用的经典问题,数据网址:https://scikit-learn.org/stable/datasets.html
Sklearn 标准数据集主要包括:
- 测试问题数据集
- 波士顿房价:Boston house prices dataset
- 鸢尾花问题:Iris plants dataset
- 糖尿病数据:Diabetes dataset
- 手写数字的识别:Optical recognition of handwritten digits dataset
- 葡萄酒鉴别:Linnerrud dataset
- 葡萄酒鉴别Wine recognition dataset
- 威斯康星州癌症诊断:reast cancer wisconsin (diagnostic) dataset
- 实际问题数据集
- 人脸数据:The Olivetti faces dataset
- 20个新闻文本数据:The 20 newsgroups text dataset
- 标记的人脸数据:The Labeled Faces in the Wild face recognition dataset
- 森林覆盖类型:Forest covertypes
- 路透社新闻数据:RCV1 dataset
- 网络入侵检测数据:Kddcup 99 dataset
- 加州住房数据:California Housing dataset
4、Sklearn 数模笔记的计划
粗略看看 Sklearn 的文档,是一个功能强大和丰富的机器学习库,远远超出了数学建模学习的范围。
基于数模教学的目的,本系列主要对应数模学习中的分类、聚类、降维问题,并不打算全面讲解 Sklearn 的各种算法,而是以典型问题为例来介绍原理简单、使用广泛的基本方法,以便新手入门。

版权说明:
YouCans 原创作品
Copyright 2021 YouCans, XUPT
Crated:2021-05-09
Python数模笔记-Sklearn(1) 介绍的更多相关文章
- Python数模笔记-Sklearn(4)线性回归
1.什么是线性回归? 回归分析(Regression analysis)是一种统计分析方法,研究自变量和因变量之间的定量关系.回归分析不仅包括建立数学模型并估计模型参数,检验数学模型的可信度,也包括利 ...
- Python数模笔记-Sklearn(2)样本聚类分析
1.分类的分类 分类的分类?没错,分类也有不同的种类,而且在数学建模.机器学习领域常常被混淆. 首先我们谈谈有监督学习(Supervised learning)和无监督学习(Unsupervised ...
- Python数模笔记-Sklearn(3)主成分分析
主成分分析(Principal Components Analysis,PCA)是一种数据降维技术,通过正交变换将一组相关性高的变量转换为较少的彼此独立.互不相关的变量,从而减少数据的维数. 1.数据 ...
- Python数模笔记-Sklearn(5)支持向量机
支持向量机(Support vector machine, SVM)是一种二分类模型,是按有监督学习方式对数据进行二元分类的广义线性分类器. 支持向量机经常应用于模式识别问题,如人像识别.文本分类.手 ...
- Python数模笔记-StatsModels 统计回归(4)可视化
1.如何认识可视化? 图形总是比数据更加醒目.直观.解决统计回归问题,无论在分析问题的过程中,还是在结果的呈现和发表时,都需要可视化工具的帮助和支持. 需要指出的是,虽然不同绘图工具包的功能.效果会有 ...
- Python数模笔记-StatsModels 统计回归(1)简介
1.关于 StatsModels statsmodels(http://www.statsmodels.org)是一个Python库,用于拟合多种统计模型,执行统计测试以及数据探索和可视化. 2.文档 ...
- Python数模笔记-Scipy库(1)线性规划问题
1.最优化问题建模 最优化问题的三要素是决策变量.目标函数和约束条件. (1)分析影响结果的因素是什么,确定决策变量 (2)决策变量与优化目标的关系是什么,确定目标函数 (3)决策变量所受的限制条件是 ...
- Python数模笔记-NetworkX(3)条件最短路径
1.带有条件约束的最短路径问题 最短路径问题是图论中求两个顶点之间的最短路径问题,通常是求最短加权路径. 条件最短路径,指带有约束条件.限制条件的最短路径.例如,顶点约束,包括必经点或禁止点的限制:边 ...
- Python数模笔记-(1)NetworkX 图的操作
1.NetworkX 图论与网络工具包 NetworkX 是基于 Python 语言的图论与复杂网络工具包,用于创建.操作和研究复杂网络的结构.动力学和功能. NetworkX 可以以标准和非标准的数 ...
随机推荐
- WPF 基础 - Window 启动动画
<Window ... WindowStyle="None" AllowsTransparency="True" RenderTransformOrigi ...
- vue Element-ui el-menu 左侧导航条
<template> <!--实现左侧导航条动态渲染(三级)--> <el-menu class="el-menu-vertical-demo" @o ...
- 社区 正式发布了 CoreWCF 0.1.0 GA
CoreWCF 项目在2021.2.19 正式发布了0.1.0 GA版本:https://github.com/CoreWCF/CoreWCF/releases/tag/v0.1.0 ,这个版本号虽然 ...
- Nodejs学习笔记(5) 文件上传系统实例
目录 2018.8.4更新: MySQL可以存放几乎任何类型的数据(图片.文档.压缩包等),但这不是最好的解决方案,正常情况下都是在数据库中存放文件路径,图片.音乐.视频.压缩包.文档等文件存放在硬 ...
- 设置beeline连接hive的数据展示格式
问题描述:beeline -u 方式导出数据,结果文件中含有"|"(竖杠). 执行的sql为:beeline -u jdbc:hive2://hadoop1:10000/defau ...
- UML类图画法整理
一 类图画法 1.类图的概念 显示出类.接口以及他们的静态结构和关系,用于描述系统的结构化设计. 2.类 类是对一组具有相同属性.操作.关系和语义对象的抽象,是面向对象的核心,包括名称.属性和方法.如 ...
- Cookie与Session的安全性
说到cookie与session我们首先要说一下为什么要引入这两个东西,这两个多西到底是干什么的 起源 由于HTTP协议使无状态的: 每一次请求都是新的请求,不会记得之前通信的状态 客户端与服务端的一 ...
- springboot+druid报错log4j:WARN No appenders could be found for logger (druid.sql.Connection). log4j:WARN Please initialize the log4j system properly.
解决方案:新建文件log4j.properties log4j.rootLogger=DEBUG, stdout log4j.appender.stdout=org.apache.log4j.Con ...
- OOP第一次博客作业
一.关于Java&&面向对象 本学期刚开始进行Java的学习,也是刚开始了解面向对象,目前也就学习了三四周的样子,期间进行了三次作业,我感觉到Java的语法和c语言中的有许多相似之处, ...
- --系统编程-网络-tcp客户端服务器编程模型、socket、htons、inet_ntop等各API详解、使用telnet测试基本服务器功能
PART1 基础知识 1. 字节序 网络字节序是大端字节序(低地址存放更高位的字节), 所以,对于字节序为小端的机器需要收发网络数据的场景,要对这些数据进行字节序转换. 字节序转换函数,常用的有四个: ...