1、SKlearn 是什么

  Sklearn(全称 SciKit-Learn),是基于 Python 语言的机器学习工具包。

  Sklearn 主要用Python编写,建立在 Numpy、Scipy、Pandas 和 Matplotlib 的基础上,也用 Cython编写了一些核心算法来提高性能。

  Sklearn 包括六大功能模块:

  • 分类(Classification):识别样本属于哪个类别,常用算法有 SVM(支持向量机)、nearest neighbors(最近邻)、random forest(随机森林)

  • 回归(Regression):预测与对象相关联的连续值属性,常用算法有 SVR(支持向量机)、 ridge regression(岭回归)、Lasso

  • 聚类(Clustering):对样本进行无监督的自动分类,常用算法有 k-Means(k均值)、spectral clustering(特征聚类)、mean-shift(均值漂移)

  • 数据降维(Dimensionality reduction):减少相关变量维数,常用算法有 PCA(主成分分析)、feature selection(特征选择)、non-negative matrix factorization(非负矩阵分解)

  • 模型选择(Model Selection):比较,验证,选择参数和模型,常用模块有 grid search(网格搜索)、cross validation(交叉验证)、 metrics(度量)

  • 数据处理 (Preprocessing):特征提取和归一化,常用模块有 preprocessing(预处理),feature extraction(特征提取)

    这六个功能模块涉及 4类算法,分类、回归 属于监督学习,聚类属于非监督学习。

  官网地址:https://scikit-learn.org/

  官方文档中文版: https://www.scikitlearn.com.cn/

  内置数据集:https://scikit-learn.org/stable/datasets.html


2、SKlearn 的安装

  Sklearn 的安装要求:Python 3.5 以上版本,需要安装 NumPy、SciPy、Pandas 工具包的支持,部分内容需要使用 Matplotlib、joblib 工具包。

  pip 安装命令:

  

pip3 install -U scikit-learn

pip3 install -U scikit-learn -i https://pypi.douban.com/simple

  注意 Sklearn 建议安装 Numpy+mkl,可以在网址http://www.lfd.uci.edu/~gohlke/pythonlibs/ 找到你需要的numpy+mkl版本,下载后 pip3安装:

pip install numpy-1.11.1+mkl-cp27-cp27m-win_amd64.whl


3、SKlearn 内置数据集

  Sklearn 内置了一些标准数据集可以用于练习和测试,都是经常被引用的经典问题,数据网址:https://scikit-learn.org/stable/datasets.html

  

  Sklearn 标准数据集主要包括:

  • 测试问题数据集

      1. 波士顿房价:Boston house prices dataset
      1. 鸢尾花问题:Iris plants dataset
      1. 糖尿病数据:Diabetes dataset
      1. 手写数字的识别:Optical recognition of handwritten digits dataset
      1. 葡萄酒鉴别:Linnerrud dataset
      1. 葡萄酒鉴别Wine recognition dataset
      1. 威斯康星州癌症诊断:reast cancer wisconsin (diagnostic) dataset
  • 实际问题数据集
      1. 人脸数据:The Olivetti faces dataset
      1. 20个新闻文本数据:The 20 newsgroups text dataset
      1. 标记的人脸数据:The Labeled Faces in the Wild face recognition dataset
      1. 森林覆盖类型:Forest covertypes
      1. 路透社新闻数据:RCV1 dataset
      1. 网络入侵检测数据:Kddcup 99 dataset
      1. 加州住房数据:California Housing dataset

4、Sklearn 数模笔记的计划

  粗略看看 Sklearn 的文档,是一个功能强大和丰富的机器学习库,远远超出了数学建模学习的范围。

  基于数模教学的目的,本系列主要对应数模学习中的分类、聚类、降维问题,并不打算全面讲解 Sklearn 的各种算法,而是以典型问题为例来介绍原理简单、使用广泛的基本方法,以便新手入门。


版权说明:

YouCans 原创作品

Copyright 2021 YouCans, XUPT

Crated:2021-05-09

Python数模笔记-Sklearn(1) 介绍的更多相关文章

  1. Python数模笔记-Sklearn(4)线性回归

    1.什么是线性回归? 回归分析(Regression analysis)是一种统计分析方法,研究自变量和因变量之间的定量关系.回归分析不仅包括建立数学模型并估计模型参数,检验数学模型的可信度,也包括利 ...

  2. Python数模笔记-Sklearn(2)样本聚类分析

    1.分类的分类 分类的分类?没错,分类也有不同的种类,而且在数学建模.机器学习领域常常被混淆. 首先我们谈谈有监督学习(Supervised learning)和无监督学习(Unsupervised ...

  3. Python数模笔记-Sklearn(3)主成分分析

    主成分分析(Principal Components Analysis,PCA)是一种数据降维技术,通过正交变换将一组相关性高的变量转换为较少的彼此独立.互不相关的变量,从而减少数据的维数. 1.数据 ...

  4. Python数模笔记-Sklearn(5)支持向量机

    支持向量机(Support vector machine, SVM)是一种二分类模型,是按有监督学习方式对数据进行二元分类的广义线性分类器. 支持向量机经常应用于模式识别问题,如人像识别.文本分类.手 ...

  5. Python数模笔记-StatsModels 统计回归(4)可视化

    1.如何认识可视化? 图形总是比数据更加醒目.直观.解决统计回归问题,无论在分析问题的过程中,还是在结果的呈现和发表时,都需要可视化工具的帮助和支持. 需要指出的是,虽然不同绘图工具包的功能.效果会有 ...

  6. Python数模笔记-StatsModels 统计回归(1)简介

    1.关于 StatsModels statsmodels(http://www.statsmodels.org)是一个Python库,用于拟合多种统计模型,执行统计测试以及数据探索和可视化. 2.文档 ...

  7. Python数模笔记-Scipy库(1)线性规划问题

    1.最优化问题建模 最优化问题的三要素是决策变量.目标函数和约束条件. (1)分析影响结果的因素是什么,确定决策变量 (2)决策变量与优化目标的关系是什么,确定目标函数 (3)决策变量所受的限制条件是 ...

  8. Python数模笔记-NetworkX(3)条件最短路径

    1.带有条件约束的最短路径问题 最短路径问题是图论中求两个顶点之间的最短路径问题,通常是求最短加权路径. 条件最短路径,指带有约束条件.限制条件的最短路径.例如,顶点约束,包括必经点或禁止点的限制:边 ...

  9. Python数模笔记-(1)NetworkX 图的操作

    1.NetworkX 图论与网络工具包 NetworkX 是基于 Python 语言的图论与复杂网络工具包,用于创建.操作和研究复杂网络的结构.动力学和功能. NetworkX 可以以标准和非标准的数 ...

随机推荐

  1. 【工具】 memtester内存压力测试工具

    作者:李春港 出处:https://www.cnblogs.com/lcgbk/p/14497838.html 目录 一.简介 二.Memtester安装 三.使用说明 四.测试示例 一.简介 mem ...

  2. react+ts封装AntdUI的日期选择框之月份选择器DatePicker.month

    需求:由于在项目开发中,当需要使用该组件时都需要对该组件进行大量的代码输出,为了方便代码统一管理,减少冗余代码,所以将此组件进行二次封装. 其他成员在使用中只需将自己的设置通过对应的参数传递到该组件, ...

  3. 最权威最简明的maven 使用教程

    Maven是一个项目管理工具,它包含了一个项目对象模型 (Project Object Model),一组标准集合,一个项目生命周期(Project Lifecycle),一个依赖管理系统(Depen ...

  4. Day2:Windows常用快捷键与基本的Dos命令

    Windows常用快捷键 必须掌握: Ctrl+C:复制 Ctrl+V:粘贴 Ctrl+Z:撤销 Ctrl+S:保存 Win键+R:运行(run) alt+F4:关闭窗口/页面 Ctrl+A:全选 C ...

  5. 基于Centos7xELK+Kafka集群部署方案

    本次集群部署使用ELK版本统一为6.8.10,kafka为2.12-2.51 均可在官网下载 elasticsearch下载地址:https://www.elastic.co/cn/downloads ...

  6. 手机浏览器通过Scheme跳转APP,兼容各种手机浏览器

    一个比较完整的产品线,必定有APP和网站,另外还有微信公众号网页和小程序.那么有一个比较常见的需求就是在手机浏览器内打开APP,实现起来也比较简单,只要APP配置的有URLScheme即可. 但是因为 ...

  7. Recoil 的使用

    通过简单的计数器应用来展示其使用.先来看没有 Recoil 时如何实现. 首先创建示例项目 $ yarn create react-app recoil-app --template typescri ...

  8. 201871010130-周学铭 实验二 个人项目—D{0-1}问题项目报告

    项目 内容 课程班级博客链接 18级卓越班 这个作业要求链接 实验二 软件工程个人项目 我的课程学习目标 掌握软件项目个人开发流程.掌握Github发布软件项目的操作方法. 这个作业在哪些方面帮助我实 ...

  9. 呵呵,Semaphore,就这?

    这是并发线程工具类的第二篇文章,在第一篇中,我们分析过 CountDownLatch 的相关内容,你可以参考 一文搞懂 CountDownLatch 用法和源码! 那么本篇文章我们继续来和你聊聊并发工 ...

  10. Linux 文件基本属性与目录管理 (chmod chown ls cp mv cat )

    Linux 文件基本属性 Linux系统是一种典型的多用户系统,不同的用户处于不同的地位,拥有不同的权限. 为了保护系统的安全性,Linux系统对不同的用户访问同一文件(包括目录文件)的权限做了不同的 ...