Content

给定两个整数 \(n,m\)。定义 \(f(p)=\sum\limits_{l=1}^n\sum\limits_{r=l}^n\min\limits_{i=l}^rp_i\),其中 \(p\) 为一个长度为 \(n\) 的排列。现在,请你求出所有使得 \(f(p)\) 最大的长度为 \(n\) 的排列中,字典序第 \(m\) 小的排列。

数据范围:\(1\leqslant n\leqslant 8\)。

Solution

看到数据范围马上想到一种很 naive 的 \(O(n!\cdot n^3)\) 的做法:先枚举所有的排列求出最大的 \(f(p)\),然后再枚举所有的排列扫到使得 \(f(p)\) 最大的字典序第 \(m\) 小的排列。

next_permutation 可以更方便地枚举全排列,具体看代码。

Code

namespace Solution {
const int N = 17;
int n, m, mx, p[N]; iv Main() {
read(n, m); F(int, i, 1, n) p[i] = i;
do {
int sum = 0;
F(int, l, 1, n) F(int, r, l, n) {
int mn = 10;
F(int, i, l, r) mn = min(mn, p[i]);
sum += mn;
}
mx = max(mx, sum);
}while(next_permutation(p + 1, p + n + 1));
int cnt = 0;
F(int, i, 1, n) p[i] = i;
do {
int sum = 0;
F(int, l, 1, n) F(int, r, l, n) {
int mn = 10;
F(int, i, l, r) mn = min(mn, p[i]);
sum += mn;
}
if(sum == mx) {
cnt++;
if(cnt == m) {
F(int, i, 1, n) printf("%d%c", p[i], " \n"[i == n]);
break;
}
}
}while(next_permutation(p + 1, p + n + 1));
return;
}
}

CF513B1 Permutations 题解的更多相关文章

  1. codechef Little Elephant and Permutations题解

    The Little Elephant likes permutations. This time he has a permutation A[1], A[2], ..., A[N] of numb ...

  2. POJ P2279 Mr. Young's Picture Permutations 题解

    每日一题 day14 打卡 Analysis 五维dpf[a1,a2,a3,a4,a5]表示各排从左端起分别占了a1,a2,a3,a4,a5个人时合影方案数量然后我们枚举a1,a2,a3,a4,a5从 ...

  3. 46. Permutations

    题目: Given a collection of numbers, return all possible permutations. For example,[1,2,3] have the fo ...

  4. CodeForces 340E Iahub and Permutations 错排dp

    Iahub and Permutations 题解: 令 cnt1 为可以没有限制位的填充数字个数. 令 cnt2 为有限制位的填充数字个数. 那么:对于cnt1来说, 他的值是cnt1! 然后我们对 ...

  5. LeetCode编程训练 - 回溯(Backtracking)

    回溯基础 先看一个使用回溯方法求集合子集的例子(78. Subsets),以下代码基本说明了回溯使用的基本框架: //78. Subsets class Solution { private: voi ...

  6. 算法与数据结构基础 - 回溯(Backtracking)

    回溯基础 先看一个使用回溯方法求集合子集的例子(78. Subsets),以下代码基本说明了回溯使用的基本框架: //78. Subsets class Solution { private: voi ...

  7. [LeetCode 题解]: Permutations

    Given a collection of numbers, return all possible permutations. For example,[1,2,3] have the follow ...

  8. [LeetCode 题解]: Permutations II

    Given a collection of numbers that might contain duplicates, return all possible unique permutations ...

  9. 【题解】POJ2279 Mr.Young′s Picture Permutations dp

    [题解]POJ2279 Mr.Young′s Picture Permutations dp 钦定从小往大放,然后直接dp. \(dp(t1,t2,t3,t4,t5)\)代表每一行多少人,判断边界就能 ...

随机推荐

  1. oracle和mysql的拼接查询

    oracle的 SELECT * FROM sys_user a WHERE 1=1 AND a.company_id || a.login_name IN('3001rddb414') 196676 ...

  2. Springboot .properties或.yml配置文件读取pom.xml文件值

    有时候配置文件需要读取pom文件配置<properties></properties>中间自定义属性值的时候可以用@@获取 例:@package.parameter@ 然后还需 ...

  3. Break up CF700C

    Break up CF700C 首先考虑只能删一条边的做法,我们可以找出所有的桥,然后随便跑一条 S 到 T 路径,如果这条路径上有桥就说明可以,否则不行 发现这个做法其实是 O(M) 的 那么可以先 ...

  4. vector.erase();vector.clear();map.erase();

    vector::erase()返回下一个iter: STL中的源码: //清除[first, last)中的所有元素 iterator erase(iterator first, iterator l ...

  5. Linux—&#160;查看系统的位数

    [root@zf-test-web01-4 ~]# file /bin/ls           #"/bin/ls" is a binary file /bin/ls: ELF ...

  6. 5.Maximum Product Subarray-Leetcode

    f(j+1)为以下标j结尾的连续子序列最大乘积值(1) 状态转移方程如何表示呢: 这里我们知道A[j]可能为正数(或0)或负数,那么当A[j]为正数,期望前j个乘积为正数,若为负数,则期望前面的为负数 ...

  7. ansible-playbook 编译安装nginx

    mkdir /etc/ansible/roles/nginx/{files,templates,tasks,handlers,vars,default,meta} -pv └── nginx ├── ...

  8. 每日自动健康打卡(Python+腾讯云服务器)

    每日自动健康打卡(Python+腾讯云服务器) 1.配置需要 python3.7,Chrome或者Edeg浏览器,Chrome驱动或者Edge驱动 #需要配置selenium库,baidu-aip库, ...

  9. 巩固javaweb的第十九天

    巩固内容: 使用 form 元素 使用 form 元素封装要提交的信息 要向服务器提交信息,需要使用 form 元素,所有要提交的信息都应该在 form 内部.在 注册界面中,所有要输入的信息都位于 ...

  10. 数仓day03-----日志预处理

    1. 为什么要构建一个地理位置维表(字典) 在埋点日志中,有用户的地理位置信息,但是原始数据形式是GPS坐标,而GPS坐标在后续(地理位置维度分析)的分析中不好使用.gps坐标的匹配,不应该做这种精确 ...