Content

给定两个整数 \(n,m\)。定义 \(f(p)=\sum\limits_{l=1}^n\sum\limits_{r=l}^n\min\limits_{i=l}^rp_i\),其中 \(p\) 为一个长度为 \(n\) 的排列。现在,请你求出所有使得 \(f(p)\) 最大的长度为 \(n\) 的排列中,字典序第 \(m\) 小的排列。

数据范围:\(1\leqslant n\leqslant 8\)。

Solution

看到数据范围马上想到一种很 naive 的 \(O(n!\cdot n^3)\) 的做法:先枚举所有的排列求出最大的 \(f(p)\),然后再枚举所有的排列扫到使得 \(f(p)\) 最大的字典序第 \(m\) 小的排列。

next_permutation 可以更方便地枚举全排列,具体看代码。

Code

namespace Solution {
const int N = 17;
int n, m, mx, p[N]; iv Main() {
read(n, m); F(int, i, 1, n) p[i] = i;
do {
int sum = 0;
F(int, l, 1, n) F(int, r, l, n) {
int mn = 10;
F(int, i, l, r) mn = min(mn, p[i]);
sum += mn;
}
mx = max(mx, sum);
}while(next_permutation(p + 1, p + n + 1));
int cnt = 0;
F(int, i, 1, n) p[i] = i;
do {
int sum = 0;
F(int, l, 1, n) F(int, r, l, n) {
int mn = 10;
F(int, i, l, r) mn = min(mn, p[i]);
sum += mn;
}
if(sum == mx) {
cnt++;
if(cnt == m) {
F(int, i, 1, n) printf("%d%c", p[i], " \n"[i == n]);
break;
}
}
}while(next_permutation(p + 1, p + n + 1));
return;
}
}

CF513B1 Permutations 题解的更多相关文章

  1. codechef Little Elephant and Permutations题解

    The Little Elephant likes permutations. This time he has a permutation A[1], A[2], ..., A[N] of numb ...

  2. POJ P2279 Mr. Young's Picture Permutations 题解

    每日一题 day14 打卡 Analysis 五维dpf[a1,a2,a3,a4,a5]表示各排从左端起分别占了a1,a2,a3,a4,a5个人时合影方案数量然后我们枚举a1,a2,a3,a4,a5从 ...

  3. 46. Permutations

    题目: Given a collection of numbers, return all possible permutations. For example,[1,2,3] have the fo ...

  4. CodeForces 340E Iahub and Permutations 错排dp

    Iahub and Permutations 题解: 令 cnt1 为可以没有限制位的填充数字个数. 令 cnt2 为有限制位的填充数字个数. 那么:对于cnt1来说, 他的值是cnt1! 然后我们对 ...

  5. LeetCode编程训练 - 回溯(Backtracking)

    回溯基础 先看一个使用回溯方法求集合子集的例子(78. Subsets),以下代码基本说明了回溯使用的基本框架: //78. Subsets class Solution { private: voi ...

  6. 算法与数据结构基础 - 回溯(Backtracking)

    回溯基础 先看一个使用回溯方法求集合子集的例子(78. Subsets),以下代码基本说明了回溯使用的基本框架: //78. Subsets class Solution { private: voi ...

  7. [LeetCode 题解]: Permutations

    Given a collection of numbers, return all possible permutations. For example,[1,2,3] have the follow ...

  8. [LeetCode 题解]: Permutations II

    Given a collection of numbers that might contain duplicates, return all possible unique permutations ...

  9. 【题解】POJ2279 Mr.Young′s Picture Permutations dp

    [题解]POJ2279 Mr.Young′s Picture Permutations dp 钦定从小往大放,然后直接dp. \(dp(t1,t2,t3,t4,t5)\)代表每一行多少人,判断边界就能 ...

随机推荐

  1. DPC++中的现代C++语言特性

    Ⅰ DPC++简介 DPC++是Data Parallel C++(数据并行C++)的首字母缩写,它是Intel为了将SYCL引入LLVM和oneAPI所开发的开源项目.SYCL是为了提高各种加速设备 ...

  2. SpringCloud微服务实战——搭建企业级开发框架(二十七):集成多数据源+Seata分布式事务+读写分离+分库分表

    读写分离:为了确保数据库产品的稳定性,很多数据库拥有双机热备功能.也就是,第一台数据库服务器,是对外提供增删改业务的生产服务器:第二台数据库服务器,主要进行读的操作. 目前有多种方式实现读写分离,一种 ...

  3. Codeforces 848E - Days of Floral Colours(分治 FFT)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙 D1E,一道货真价实的 *3400 %%%%%%%%%%%% 首先注意到一点,由于该图为中心对称图形,\(1\sim n\) 的染色 ...

  4. [USACO07MAR]Face The Right Way G

    发现选定一个长度后,怎么翻转是固定的. 那我们直接选定一个长度去操作就行. 优化操作过程 类似于堆里打持久化标记一样的感觉. [USACO07MAR]Face The Right Way G // P ...

  5. HDU 5322 Hope

    HDU 5322 Hope 考虑 $ dp[n] $ 表示 长度为 $ n $ 的所有排列的答案. 首先,对于一个排列来说,如果最大值在 $ i $ 位置,那么前 $ i - 1 $ 个数必然与 $ ...

  6. ZROI 2019 暑期游记

    ZROI 游记 在自闭中度过了17天 挖了无数坑,填了一点坑 所以还是有好多坑啊zblzbl 挖坑总集: 时间分治 差分约束 Prufer序列 容斥 树上数据结构 例题C (和后面的例题) 点分 最大 ...

  7. Codeforces 193E - Fibonacci Number(打表找规律+乱搞)

    Codeforces 题目传送门 & 洛谷题目传送门 蠢蠢的我竟然第一眼想套通项公式?然鹅显然 \(5\) 在 \(\bmod 10^{13}\) 意义下并没有二次剩余--我真是活回去了... ...

  8. CF1553 部分题解

    CF1553D Backspace 题目传送门. 题意简述:给定 \(s,t\),现在要依次输入 \(s\) 中的字符.对于每个字符 \(s_i\),你可以选择输入 \(s_i\) 或者使用退格键,判 ...

  9. VS调用别人的COM组件的问题

    调用第三方的COM组件,记得要先在管理员cmd执行:regsvr32 xxxx.dll 没执行之前运行 HRESULT hr = pComm.CreateInstance("xxxx.Com ...

  10. 【R绘图】R 基础(base )低级函数legend绘图?

    ggplot虽然好用,但base才是真正的瑞士军刀,什么都能用,各种自定义图形自由组合,出版级图片用base才是王道.但要达到随心所欲,需要熟练掌握. legend是比较重要的低级函数,有很多细节处理 ...