One EEG preprocessing pipeline - EEG-fMRI paradigm
The preprocessing pipeline of EEG data from EEG-fMRI paradigm differs from that of regular EEG data, because they are mainly influenced by MRI artefacts. However, after removing the MRI artefacts at the first step, following ones would be the same as the regular pipeline.

Figure above: an example of raw EEG data with MRI artefacts - the very dense part. Only after removing the dominating artefacts could we go on with other preprocessing and analyses.
Environment requirement
- Matlab (R2015b).
- EEGLab toolbox (v13.6.5b). Plug-ins needed: BERGEN, FMRIB, AAR.
Testing data
Acquired using an Brain Products system with 64 scalp channels. Standard procedure to setup the EEG system: fs = 5000 Hz, low-pass hard ware filter at 250 Hz. Using SyncBox to sync the EEG and fMRI clocks.
Gathering continuous data for about 10-min.
Pipeline
- Removing gradient artefacts: using BERGEN plug-in. Sliding window length for artefact template = 31.
- Filtering: first high-pass at 0.5 Hz, then low-pass at 45 Hz - do NOT using band-pass filter, do them separately.
- Resample the data to fs = 500 Hz. Resample before QRS detection is beneficial (as far as I can see).
- Detect R-peaks, visually check incorrect ones and remove cardiac artefacts: using FMRIB plug-in (optimal basis set: first 3 PCs used). Using Edit -> Event values to delete the incorrect QRS events.
- Import channel locations: using '\dipfit2.3\standard_BESA\standard-10-5-cap385.elp'.
- Select the data points to be analysed - to save time.
- Remove ECG and bad channels (Must done before re-reference).
- Re-reference: average reference.
- Removing EOG (blinks) and EMG artefacts using AAR plug-in directly.
Note
- The data is a continuous data. For task data (i.e. you may epoch them first), baseline correction is needed.
- The AAR plugin is good to detect EOG and EMG artefacts, but sometimes they do not pick up ICs relating to residuals of R-peak artefacts.
- Considering what mentioned above, an alternative is using 'ICA + ADJUST plug-in' to replace AAR in step 9. This is a better strategy with enough experience on recognising artefact ICs.
- Removing power interference may be needed sometimes: 'Tools -> Filter the data -> Basic FIR filter -> Lower & Higher: both 50Hz, using Notch filter'.
- The steps and their order may vary among different groups, while the main parts remain unchanged.
- Inspired by 52Brain. Thanks a lot to the contributors.
One EEG preprocessing pipeline - EEG-fMRI paradigm的更多相关文章
- EEG preprocessing - A Trick Before Doing ICA
EEGLab maillist My ICs don't have high power in low frequency is b/c I do a small trick here. before ...
- EEG preprocess - re-reference EEG预处理 - 重参考
Source: https://blricrex.hypotheses.org/ressources/eeg/pre-processing-for-erps/re-referencing-eeg-da ...
- [Machine Learning with Python] My First Data Preprocessing Pipeline with Titanic Dataset
The Dataset was acquired from https://www.kaggle.com/c/titanic For data preprocessing, I firstly def ...
- Specific sleep staging features in EEG
Source: MedScape Overview NREM and REM occur in alternating cycles, each lasting approximately 90-10 ...
- EEG montage
Source: WikiPedia - Electroencephalography Since an EEG voltage signal represents a difference betwe ...
- Advice for applying Machine Learning
https://jmetzen.github.io/2015-01-29/ml_advice.html Advice for applying Machine Learning This post i ...
- Recover data from reference electrode via EEGLab 用EEGLab恢复参考电极数据
The data of scanning reference electrode will not show initially. Here is a summary of recovering it ...
- EEGLAB数据分析:预处理与后续处理
来源:http://blog.sina.com.cn/s/blog_13171a73d0102v4zx.html 数据预处理主要包括数据导入.电极定位.电极返回.滤波.去除伪迹.重建参考.分段.叠加平 ...
- 使用Flask部署机器学习模型
Introduction A lot of Machine Learning (ML) projects, amateur and professional, start with an aplomb ...
随机推荐
- ElasticSearch+NLog+Elmah实现Asp.Net分布式日志管理
本文将介绍使用NLOG.Elmah结合ElasticSearch实现分布式日志管理. 一.ElasticSearch简介 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布 ...
- Atitit利用反射获取子类 集合 以及继承树
Atitit利用反射获取子类 集合 以及继承树 想从父类往下找子类的确是不可能的,要知道只要类不是final的话谁都有继承它的自由不需要事前通知父类. Eclipse实现不是重父类开始找而是重子类往回 ...
- Easticsearch通信方式_API
目录 返回目录:http://www.cnblogs.com/hanyinglong/p/5464604.html 1.Elasticsearch概念 a. Elasticsearch是一个基于Luc ...
- Html之 IFrame使用,注意几点
0x01 iframe的跳出框架 0x02 iframe样式设置 0x03 iframe重置高度 1.首先来一个,跳出iframe的好方法,直接可以在Login.aspx页面使用. if (windo ...
- Synchronization Service Manager
You can use this UI Shell to check the User Profile log for the SharePoint. It's stored in this pa ...
- iOS开发-UI 从入门到精通(三)
iOS开发-UI 从入门到精通(三)是对 iOS开发-UI 从入门到精通(一)知识点的综合练习,搭建一个简单地登陆界面,增强实战经验,为以后做开发打下坚实的基础! ※在这里我们还要强调一下,开发环境和 ...
- IOS开发基础知识--碎片2
六:获得另一个控件器,并实现跳转 UIStoryboard* mainStoryboard = [UIStoryboard storyboardWithName:@"MainStoryboa ...
- 详解tintColor属性
tintColor属性是iOS7之后新加的一个属性,这个属性定义了一个非默认的着色颜色值,其值的设置会影响到以视图为根视图的整个视图层次结构.它主要是改变控件的颜色,以获取一些有意思的视觉效果. ti ...
- AtomicInteger源码注释
AtomicInteger源码 在java.util.concurrent.atomic包下提供了大量的原子类,这里以AtomicInteger源码为例,添加了一些注释,个人理解,供参考: 其中比较重 ...
- SqlHelper类
using System; using System.Collections; using System.Collections.Generic; using System.Data; using S ...