1. TensorFlow model

import math
import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy
from PIL import Image
from scipy import ndimage
import tensorflow as tf
from tensorflow.python.framework import ops
from cnn_utils import * %matplotlib inline
np.random.seed(1)

导入数据

# Loading the data (signs)
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()

the SIGNS dataset is a collection of 6 signs representing numbers from 0 to 5.

展示数据

# Example of a picture
index = 6
plt.imshow(X_train_orig[index])
print ("y = " + str(np.squeeze(Y_train_orig[:, index])))

y = 2

数据的维度

X_train = X_train_orig/255.
X_test = X_test_orig/255.
Y_train = convert_to_one_hot(Y_train_orig, 6).T
Y_test = convert_to_one_hot(Y_test_orig, 6).T
print ("number of training examples = " + str(X_train.shape[0]))
print ("number of test examples = " + str(X_test.shape[0]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))
conv_layers = {}

number of training examples = 1080

number of test examples = 120

X_train shape: (1080, 64, 64, 3)

Y_train shape: (1080, 6)

X_test shape: (120, 64, 64, 3)

Y_test shape: (120, 6)

1.1 Create placeholders

TensorFlow requires that you create placeholders for the input data that will be fed into the model when running the session.

Exercise: Implement the function below to create placeholders for the input image X and the output Y.

  • You should not define the number of training examples for the moment.

  • To do so, you could use "None" as the batch size, it will give you the flexibility to choose it later.

  • Hence X should be of dimension [None, n_H0, n_W0, n_C0] and Y should be of dimension [None, n_y]. Hint.

# GRADED FUNCTION: create_placeholders

def create_placeholders(n_H0, n_W0, n_C0, n_y):
"""
Creates the placeholders for the tensorflow session. Arguments:
n_H0 -- scalar, height of an input image
n_W0 -- scalar, width of an input image
n_C0 -- scalar, number of channels of the input
n_y -- scalar, number of classes Returns:
X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float"
Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float"
""" ### START CODE HERE ### (≈2 lines)
X = tf.placeholder(tf.float32, shape=[None, n_H0, n_W0, n_C0])
Y = tf.placeholder(tf.float32, shape=[None, n_y])
### END CODE HERE ### return X, Y

测试:

X, Y = create_placeholders(64, 64, 3, 6)
print ("X = " + str(X))
print ("Y = " + str(Y))

输出:

X = Tensor("Placeholder:0", shape=(?, 64, 64, 3), dtype=float32)

Y = Tensor("Placeholder_1:0", shape=(?, 6), dtype=float32)

1.2 Initialize parameters

  • You will initialize weights/filters \(W1\) and \(W2\) using tf.contrib.layers.xavier_initializer(seed = 0).

  • You don't need to worry about bias variables as you will soon see that TensorFlow functions take care of the bias.

  • Note also that you will only initialize the weights/filters for the conv2d functions. TensorFlow initializes the layers for the fully connected part automatically. We will talk more about that later in this assignment.

Exercise: Implement initialize_parameters(). The dimensions for each group of filters are provided below. Reminder - to initialize a parameter \(W\) of shape [1,2,3,4] in Tensorflow, use:

W = tf.get_variable("W", [1,2,3,4], initializer = ...)

More Info.

# GRADED FUNCTION: initialize_parameters

def initialize_parameters():
"""
Initializes weight parameters to build a neural network with tensorflow. The shapes are:
W1 : [4, 4, 3, 8]
W2 : [2, 2, 8, 16]
Returns:
parameters -- a dictionary of tensors containing W1, W2
""" tf.set_random_seed(1) # so that your "random" numbers match ours ### START CODE HERE ### (approx. 2 lines of code)
# (f, f, n_C_prev, n_C)
W1 = tf.get_variable('W1',[4, 4, 3, 8], initializer = tf.contrib.layers.xavier_initializer(seed = 0))
W2 = tf.get_variable('W2',[2, 2, 8, 16], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) ### END CODE HERE ### parameters = {"W1": W1,
"W2": W2} return parameters

测试

tf.reset_default_graph()
with tf.Session() as sess_test:
parameters = initialize_parameters()
init = tf.global_variables_initializer()
sess_test.run(init)
print("W1 = " + str(parameters["W1"].eval()[1,1,1]))
print("W2 = " + str(parameters["W2"].eval()[1,1,1]))

1.2 Forward propagation

In TensorFlow, there are built-in functions that carry out the convolution steps for you.

  • tf.nn.conv2d(X,W1, strides = [1,s,s,1], padding = 'SAME'): given an input \(X\) and a group of filters \(W1\), this function convolves \(W1\)'s filters on X. The third input ([1,f,f,1]) represents the strides for each dimension of the input (m, n_H_prev, n_W_prev, n_C_prev). You can read the full documentation here

  • tf.nn.max_pool(A, ksize = [1,f,f,1], strides = [1,s,s,1], padding = 'SAME'): given an input A, this function uses a window of size (f, f) and strides of size (s, s) to carry out max pooling over each window. You can read the full documentation here

  • tf.nn.relu(Z1): computes the elementwise ReLU of Z1 (which can be any shape). You can read the full documentation here.

  • tf.contrib.layers.flatten(P): given an input P, this function flattens each example into a 1D vector it while maintaining the batch-size. It returns a flattened tensor with shape [batch_size, k]. You can read the full documentation here.

  • tf.contrib.layers.fully_connected(F, num_outputs): given a the flattened input F, it returns the output computed using a fully connected layer. You can read the full documentation here.

In the last function above (tf.contrib.layers.fully_connected), the fully connected layer automatically initializes weights in the graph and keeps on training them as you train the model. Hence, you did not need to initialize those weights when initializing the parameters.

Exercise:

Implement the forward_propagation function below to build the following model: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED. You should use the functions above.

In detail, we will use the following parameters for all the steps:

  • Conv2D: stride 1, padding is "SAME"

  • ReLU

  • Max pool: Use an 8 by 8 filter size and an 8 by 8 stride, padding is "SAME"

  • Conv2D: stride 1, padding is "SAME"

  • ReLU

  • Max pool: Use a 4 by 4 filter size and a 4 by 4 stride, padding is "SAME"

  • Flatten the previous output.

  • FULLYCONNECTED (FC) layer: Apply a fully connected layer without an non-linear activation function. Do not call the softmax here. This will result in 6 neurons in the output layer, which then get passed later to a softmax. In TensorFlow, the softmax and cost function are lumped together into a single function, which you'll call in a different function when computing the cost.

# GRADED FUNCTION: forward_propagation

def forward_propagation(X, parameters):
"""
Implements the forward propagation for the model:
CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Arguments:
X -- input dataset placeholder, of shape (input size, number of examples)
parameters -- python dictionary containing your parameters "W1", "W2"
the shapes are given in initialize_parameters Returns:
Z3 -- the output of the last LINEAR unit
""" # Retrieve the parameters from the dictionary "parameters"
W1 = parameters['W1']
W2 = parameters['W2'] ### START CODE HERE ###
# CONV2D: stride of 1, padding 'SAME'
Z1 = tf.nn.conv2d(X, W1, strides = [1, 1, 1, 1], padding = 'SAME')
# RELU
A1 = tf.nn.relu(Z1)
# MAXPOOL: window 8x8, sride 8, padding 'SAME'
P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME')
# CONV2D: filters W2, stride 1, padding 'SAME'
Z2 = tf.nn.conv2d(P1,W2, strides = [1,1,1,1], padding = 'SAME')
# RELU
A2 = tf.nn.relu(Z2)
# MAXPOOL: window 4x4, stride 4, padding 'SAME'
P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME')
# FLATTEN
P2 = tf.contrib.layers.flatten(P2)
# FULLY-CONNECTED without non-linear activation function (not not call softmax).
# 6 neurons in output layer. Hint: one of the arguments should be "activation_fn=None"
Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn=None)
### END CODE HERE ### return Z3

测试:

tf.reset_default_graph()

with tf.Session() as sess:
np.random.seed(1)
X, Y = create_placeholders(64, 64, 3, 6)
parameters = initialize_parameters()
Z3 = forward_propagation(X, parameters)
init = tf.global_variables_initializer()
sess.run(init)
a = sess.run(Z3, {X: np.random.randn(2,64,64,3), Y: np.random.randn(2,6)})
print("Z3 = " + str(a))

1.3 Compute cost

Implement the compute cost function below. You might find these two functions helpful:

  • tf.nn.softmax_cross_entropy_with_logits(logits = Z3, labels = Y):

    • computes the softmax entropy loss. This function both computes the softmax activation function as well as the resulting loss.

    • You can check the full documentation here.

  • tf.reduce_mean: computes the mean of elements across dimensions of a tensor.

    • Use this to sum the losses over all the examples to get the overall cost. You can check the full documentation here.

** Exercise**: Compute the cost below using the function above.

# GRADED FUNCTION: compute_cost 

def compute_cost(Z3, Y):
"""
Computes the cost Arguments:
Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
Y -- "true" labels vector placeholder, same shape as Z3 Returns:
cost - Tensor of the cost function
""" ### START CODE HERE ### (1 line of code)
cost = tf.nn.softmax_cross_entropy_with_logits(logits = Z3, labels = Y)
cost = tf.reduce_mean(cost)
### END CODE HERE ### return cost

测试:

tf.reset_default_graph()

with tf.Session() as sess:
np.random.seed(1)
X, Y = create_placeholders(64, 64, 3, 6)
parameters = initialize_parameters()
Z3 = forward_propagation(X, parameters)
cost = compute_cost(Z3, Y)
init = tf.global_variables_initializer()
sess.run(init)
a = sess.run(cost, {X: np.random.randn(4,64,64,3), Y: np.random.randn(4,6)})
print("cost = " + str(a))

cost = 2.91034

1.4 Model

Finally you will merge the helper functions you implemented above to build a model. You will train it on the SIGNS dataset.

You have implemented random_mini_batches() in the Optimization programming assignment of course 2. Remember that this function returns a list of mini-batches.

Exercise: Complete the function below.

The model below should:

  • create placeholders
  • initialize parameters
  • forward propagate
  • compute the cost
  • create an optimizer

Finally you will create a session and run a for loop for num_epochs, get the mini-batches, and then for each mini-batch you will optimize the function. Hint for initializing the variables

# GRADED FUNCTION: model

def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009,
num_epochs = 100, minibatch_size = 64, print_cost = True):
"""
Implements a three-layer ConvNet in Tensorflow:
CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Arguments:
X_train -- training set, of shape (None, 64, 64, 3)
Y_train -- test set, of shape (None, n_y = 6)
X_test -- training set, of shape (None, 64, 64, 3)
Y_test -- test set, of shape (None, n_y = 6)
learning_rate -- learning rate of the optimization
num_epochs -- number of epochs of the optimization loop
minibatch_size -- size of a minibatch
print_cost -- True to print the cost every 100 epochs Returns:
train_accuracy -- real number, accuracy on the train set (X_train)
test_accuracy -- real number, testing accuracy on the test set (X_test)
parameters -- parameters learnt by the model. They can then be used to predict.
""" ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables
tf.set_random_seed(1) # to keep results consistent (tensorflow seed)
seed = 3 # to keep results consistent (numpy seed)
(m, n_H0, n_W0, n_C0) = X_train.shape
n_y = Y_train.shape[1]
costs = [] # To keep track of the cost # Create Placeholders of the correct shape
### START CODE HERE ### (1 line)
X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)
### END CODE HERE ### # Initialize parameters
### START CODE HERE ### (1 line)
parameters = initialize_parameters()
### END CODE HERE ### # Forward propagation: Build the forward propagation in the tensorflow graph
### START CODE HERE ### (1 line)
Z3 = forward_propagation(X, parameters)
### END CODE HERE ### # Cost function: Add cost function to tensorflow graph
### START CODE HERE ### (1 line)
cost = compute_cost(Z3, Y)
### END CODE HERE ### # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.
### START CODE HERE ### (1 line)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
### END CODE HERE ### # Initialize all the variables globally
init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph
with tf.Session() as sess: # Run the initialization
sess.run(init) # Do the training loop
for epoch in range(num_epochs): minibatch_cost = 0.
num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
seed = seed + 1
minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch
(minibatch_X, minibatch_Y) = minibatch
# IMPORTANT: The line that runs the graph on a minibatch.
# Run the session to execute the optimizer and the cost, the feedict should contain a minibatch for (X,Y).
### START CODE HERE ### (1 line)
_ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
### END CODE HERE ### minibatch_cost += temp_cost / num_minibatches # Print the cost every epoch
if print_cost == True and epoch % 5 == 0:
print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))
if print_cost == True and epoch % 1 == 0:
costs.append(minibatch_cost) # plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show() # Calculate the correct predictions
predict_op = tf.argmax(Z3, 1)
correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1)) # Calculate accuracy on the test set
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(accuracy)
train_accuracy = accuracy.eval({X: X_train, Y: Y_train})
test_accuracy = accuracy.eval({X: X_test, Y: Y_test})
print("Train Accuracy:", train_accuracy)
print("Test Accuracy:", test_accuracy) return train_accuracy, test_accuracy, parameters

测试:

_, _, parameters = model(X_train, Y_train, X_test, Y_test)

Cost after epoch 0: 1.917920

Cost after epoch 5: 1.532475

Cost after epoch 10: 1.014804

Cost after epoch 15: 0.885137

Cost after epoch 20: 0.766963

Cost after epoch 25: 0.651208

Cost after epoch 30: 0.613356

Cost after epoch 35: 0.605931

Cost after epoch 40: 0.534713

Cost after epoch 45: 0.551402

Cost after epoch 50: 0.496976

Cost after epoch 55: 0.454438

Cost after epoch 60: 0.455496

Cost after epoch 65: 0.458359

Cost after epoch 70: 0.450040

Cost after epoch 75: 0.410687

Cost after epoch 80: 0.469005

Cost after epoch 85: 0.389253

Cost after epoch 90: 0.363808

Cost after epoch 95: 0.376132

Tensor("Mean_1:0", shape=(), dtype=float32)

Train Accuracy: 0.86851853

Test Accuracy: 0.73333335

Convolutional Neural Network-week1编程题(TensorFlow实现手势数字识别)的更多相关文章

  1. Convolutional Neural Network in TensorFlow

    翻译自Build a Convolutional Neural Network using Estimators TensorFlow的layer模块提供了一个轻松构建神经网络的高端API,它提供了创 ...

  2. Tensorflow - Implement for a Convolutional Neural Network on MNIST.

    Coding according to TensorFlow 官方文档中文版 中文注释源于:tf.truncated_normal与tf.random_normal TF-卷积函数 tf.nn.con ...

  3. tensorflow MNIST Convolutional Neural Network

    tensorflow MNIST Convolutional Neural Network MNIST CNN 包含的几个部分: Weight Initialization Convolution a ...

  4. 卷积神经网络(Convolutional Neural Network,CNN)

    全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网 ...

  5. ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network

    最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...

  6. ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network SOC

    最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...

  7. 【转载】 卷积神经网络(Convolutional Neural Network,CNN)

    作者:wuliytTaotao 出处:https://www.cnblogs.com/wuliytTaotao/ 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎 ...

  8. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  9. 卷积神经网络(Convolutional Neural Network, CNN)简析

    目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID ...

随机推荐

  1. docker快速创建轻量级的可移植的容器(一)

    系列其他内容 docker快速创建轻量级的可移植的容器✓ docker&flask快速构建服务接口 docker&uwsgi高性能WSGI服务器生产部署必备 docker&gu ...

  2. Intel® QAT加速卡之逻辑实例

    Intel QAT加速卡逻辑实例 1. QAT相关的名词组织关系 在本手册中描述的平台上,处理器可以连接到一个或多个英特尔通信芯片组8925至8955系列(PCH)设备. 从软件角度来看,每个PCH设 ...

  3. 如果还是看不懂container_of()函数,那算我输

    在linux 内核编程中,会经常见到一个宏函数container_of(ptr,type,member), 但是当你通过追踪源码时,像我们这样的一般人就会绝望了(这一堆都是什么呀? 函数还可以这样定义 ...

  4. FastDFS 配置 Nginx 模块及访问测试

    #备注:以下nginx-1.10.3源码目录根据nginx版本号不同会有相应的变化,以nginx版本号为准#一.安装 Nginx 和 fastdfs-nginx-module1,安装 Nginx 请看 ...

  5. 10 个不为人知的Python冷知识

    1. 省略号也是对象 ... 这是省略号,在Python中,一切皆对象.它也不例外. 在 Python 中,它叫做 Ellipsis . 在 Python 3 中你可以直接写-来得到这玩意. > ...

  6. Ansible快速实战指南----多机自动化执行命令、部署神器

                                      1.需求: 需要在多台主机上,发送文件.执行命令,进行快速部署 2.ansible 远程复制文件 例子:在当前节点(20.88.14 ...

  7. MySQL之索引复合索引有效性

    首先这里建立一张数据表,并建立符合索引( index_A,index_B,index_C) CREATE TABLE `test_index_sequence` ( `Id` int(11) NOT ...

  8. lua文件修改为二进制文件

    注意:lua编译跟luajit编译的二进制文件是不兼容,不能运行的 如果是使用luajit,请直接使用luajit直接编译二进制 第一种:luajit编译(以openresty为例,跟luac是相反的 ...

  9. 鸿蒙内核源码分析(静态链接篇) | 完整小项目看透静态链接过程 | 百篇博客分析OpenHarmony源码 | v54.01

    百篇博客系列篇.本篇为: v54.xx 鸿蒙内核源码分析(静态链接篇) | 完整小项目看透静态链接过程 | 51.c.h.o 下图是一个可执行文件编译,链接的过程. 本篇将通过一个完整的小工程来阐述E ...

  10. DOC命令和批处理命令

    本文章以极简的方式展现,相信能够浏览到这篇文章的人都对批命令有了一定的了解,我不会把文章写的长篇大论 重要!!! (命令/?)查看帮助文档 (命令/help)查看详细帮助文档 附:思维导图 批处理编程 ...