解决hash冲突的三个方法(转)
https://www.cnblogs.com/wuchaodzxx/p/7396599.html
通过构造性能良好的哈希函数,可以减少冲突,但一般不可能完全避免冲突,因此解决冲突是哈希法的另一个关键问题。创建哈希表和查找哈希表都会遇到冲突,两种情况下解决冲突的方法应该一致。下面以创建哈希表为例,说明解决冲突的方法。常用的解决冲突方法有以下四种:
开放定址法
这种方法也称再散列法,其基本思想是:当关键字key的哈希地址p=H(key)出现冲突时,以p为基础,产生另一个哈希地址p1,如果p1仍然冲突,再以p为基础,产生另一个哈希地址p2,…,直到找出一个不冲突的哈希地址pi ,将相应元素存入其中。这种方法有一个通用的再散列函数形式:
Hi=(H(key)+di)% m i=1,2,…,n
其中H(key)为哈希函数,m 为表长,di称为增量序列。增量序列的取值方式不同,相应的再散列方式也不同。主要有以下三种:
线性探测再散列
dii=1,2,3,…,m-1
这种方法的特点是:冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。
二次探测再散列
di=12,-12,22,-22,…,k2,-k2 ( k<=m/2 )
这种方法的特点是:冲突发生时,在表的左右进行跳跃式探测,比较灵活。
伪随机探测再散列
di=伪随机数序列。
具体实现时,应建立一个伪随机数发生器,(如i=(i+p) % m),并给定一个随机数做起点。
例如,已知哈希表长度m=11,哈希函数为:H(key)= key % 11,则H(47)=3,H(26)=4,H(60)=5,假设下一个关键字为69,则H(69)=3,与47冲突。
如果用线性探测再散列处理冲突,下一个哈希地址为H1=(3 + 1)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 + 2)% 11 = 5,还是冲突,继续找下一个哈希地址为H3=(3 + 3)% 11 = 6,此时不再冲突,将69填入5号单元。
如果用二次探测再散列处理冲突,下一个哈希地址为H1=(3 + 12)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 - 12)% 11 = 2,此时不再冲突,将69填入2号单元。
如果用伪随机探测再散列处理冲突,且伪随机数序列为:2,5,9,……..,则下一个哈希地址为H1=(3 + 2)% 11 = 5,仍然冲突,再找下一个哈希地址为H2=(3 + 5)% 11 = 8,此时不再冲突,将69填入8号单元。
再哈希法
这种方法是同时构造多个不同的哈希函数:
Hi=RH1(key) i=1,2,…,k
当哈希地址Hi=RH1(key)发生冲突时,再计算Hi=RH2(key)……,直到冲突不再产生。这种方法不易产生聚集,但增加了计算时间。
链地址法
这种方法的基本思想是将所有哈希地址为i的元素构成一个称为同义词链的单链表,并将单链表的头指针存在哈希表的第i个单元中,因而查找、插入和删除主要在同义词链中进行。链地址法适用于经常进行插入和删除的情况。
建立公共溢出区
这种方法的基本思想是:将哈希表分为基本表和溢出表两部分,凡是和基本表发生冲突的元素,一律填入溢出表。
优缺点
开放散列(open hashing)/ 拉链法(针对桶链结构)
①对于记录总数频繁可变的情况,处理的比较好(也就是避免了动态调整的开销)
②由于记录存储在结点中,而结点是动态分配,不会造成内存的浪费,所以尤其适合那种记录本身尺寸(size)很大的情况,因为此时指针的开销可以忽略不计了
③删除记录时,比较方便,直接通过指针操作即可
①存储的记录是随机分布在内存中的,这样在查询记录时,相比结构紧凑的数据类型(比如数组),哈希表的跳转访问会带来额外的时间开销
②如果所有的 key-value 对是可以提前预知,并之后不会发生变化时(即不允许插入和删除),可以人为创建一个不会产生冲突的完美哈希函数(perfect hash function),此时封闭散列的性能将远高于开放散列
③由于使用指针,记录不容易进行序列化(serialize)操作
封闭散列(closed hashing)/ 开放定址法
①记录更容易进行序列化(serialize)操作
②如果记录总数可以预知,可以创建完美哈希函数,此时处理数据的效率是非常高的
①存储记录的数目不能超过桶数组的长度,如果超过就需要扩容,而扩容会导致某次操作的时间成本飙升,这在实时或者交互式应用中可能会是一个严重的缺陷
②使用探测序列,有可能其计算的时间成本过高,导致哈希表的处理性能降低
③由于记录是存放在桶数组中的,而桶数组必然存在空槽,所以当记录本身尺寸(size)很大并且记录总数规模很大时,空槽占用的空间会导致明显的内存浪费
④删除记录时,比较麻烦。比如需要删除记录a,记录b是在a之后插入桶数组的,但是和记录a有冲突,是通过探测序列再次跳转找到的地址,所以如果直接删除a,a的位置变为空槽,而空槽是查询记录失败的终止条件,这样会导致记录b在a的位置重新插入数据前不可见,所以不能直接删除a,而是设置删除标记。这就需要额外的空间和操作。
解决hash冲突的三个方法(转)的更多相关文章
- 解决hash冲突的三个方法
通过构造性能良好的哈希函数,可以减少冲突,但一般不可能完全避免冲突,因此解决冲突是哈希法的另一个关键问题.创建哈希表和查找哈希表都会遇到冲突,两种情况下解决冲突的方法应该一致.下面以创建哈希表为例,说 ...
- 解决hash冲突的三个方法-考虑获取
哈希表值的获取要考虑全部可能空间. 在链地址法中,可能空间就是具有相同hash值的链表. 目录 开放定址法 线性探测再散列 二次探测再散列 伪随机探测再散列 再哈希法 链地址法 建立公共溢出区 优 ...
- 哈希表(一):解决hash冲突的几种方法
(一)线性探测法 线性探测法是最简单的处理冲突的方法. (1)插入元素:插入元素时,如果发生冲突,算法将从该槽位向后遍历哈希表,直到找到表中的下一个空槽,并将该值放入到空槽当中. (2)查找元素:查找 ...
- 大厂面试必问!HashMap 怎样解决hash冲突?
HashMap冲突解决方法比较考验一个开发者解决问题的能力. 下文给出HashMap冲突的解决方法以及原理分析,无论是在面试问答或者实际使用中,应该都会有所帮助. 在Java编程语言中,最基本的结构就 ...
- 解决hash冲突之分离链接法
解决hash冲突之分离链接法 分离链接法:其做法就是将散列到同一个值的所有元素保存到一个表中. 这样讲可能比较抽象,下面看一个图就会很清楚,图如下 相应的实现可以用分离链接散列表来实现(其实就是一个l ...
- 链表法解决hash冲突
/* @链表法解决hash冲突 * 大单元数组,小单元链表 */ #pragma once #include <string> using namespace std; template& ...
- JDK8;HashMap:再散列解决hash冲突 ,源码分析和分析思路
JDK8中的HashMap相对JDK7中的HashMap做了些优化. 接下来先通过官方的英文注释探究新HashMap的散列怎么实现 先不给源码,因为直接看源码肯定会晕,那么我们先从简单的概念先讲起 ...
- 解决hash冲突方法
转自:https://www.cnblogs.com/wuchaodzxx/p/7396599.html 目录 开放定址法 线性探测再散列 二次探测再散列 伪随机探测再散列 再哈希法 链地址法 建立公 ...
- 解决hash冲突的方法
复制粘贴于:https://www.cnblogs.com/wuchaodzxx/p/7396599.html#H1_2 开放地址法(线性探测法.二次探测.伪随机探测) 再哈希法 链地址法 建立公共溢 ...
随机推荐
- C++学习(三)(C语言部分)之 基本数据类型
基本数据类型 上期回顾 stdlib.h system,命令release MT导入ico文件 基本数据类型 整数 int浮点型(小数 实型) float double字符型 char 变量 常量速度 ...
- [Codeforces Round #492 (Div. 1) ][B. Suit and Tie]
http://codeforces.com/problemset/problem/995/B 题目大意:给一个长度为2*n的序列,分别有2个1,2,3,...n,相邻的位置可以进行交换,求使所有相同的 ...
- 《DSP using MATLAB》Problem 6.6
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- Echarts全解注释
coordinate-geo.js文件为地理坐标系的配置参数 mytextStyle={ color:"#333",//文字颜色 fontStyle:"normal&qu ...
- 经过强制类型转换以后,变量a, b的值分别为( )short a = 128; byte b = (byte) a;
1.Java中用补码形式表示 2.第一位正负位,1表示负,0表示正. 3.原码:一个数的二进制表示. 3的原码00000011 -3的 原码 10000011 4 ...
- Connect模块解析 转载
来自对<了不起的Node.js>一书的学习ConnectNode.js为常规的网络应用提供了基本的API.然而,实际情况下,绝大部分网络应用都需要完成一系列类似的操作,这些类似的操作你一定 ...
- 从MySQL和MongoDB的对比,看SQL与NoSQL的较量
张家江,网易乐得高级工程师. 贵金属(注:贵金属为笔者部门业务)的行情系统提供的接口通过Redis获取数据,目前使用Redis最多只存储了大概8000条左右的分钟k的行情数据,考虑到将来可能会有更大数 ...
- software download
Develop Sourceinsight 3.50.0066 http://pan.baidu.com 这个版本支持输入文件名的一部分来查找文件,而不像3.50.0029必须输入完整的文件名 VFP ...
- MySQL--批量KILL连接
============================================== 使用SELECT INTO OUTFILE方式获取到要删除的连接ID并保存为文件,在通过SOURCE执行 ...
- Singer 学习十三 发现模式
发现模式 发现模式提供了一种描述tap 支持数据流的方式,使用了json schema 做为描述数据的结构以及每个数据流的 类型,发现模式的实现依赖tap 的数据源,有些taps 将硬编码每个流的模式 ...