bzoj 3450 期望分数
自己只能想到O(n^2)的:
dp[i][j] 表示 以i结尾,长度为j的o串的概率,然后在每次遇到x的时候算分数.
正解是:
dp[i]表示前i个的答案,d[i]表示以i结尾的期望长度.
推的时候它用d[i]*d[i]-d[i-1]*d[i-1]来算新增的贡献,有点不明白为什么可以这样(平方的期望应该不等于期望的平方才对吧).
哪天问问jason_yu.
这道题,假如我们已经确定了问号的内容,那么我们怎么求该种情况的分数的?
它等于:ans = sigma d[i]*d[i]-d[i-1]*d[i-1] ( if d[i]=d[i-1]+1 ) = sigma 2*d[i-1]+1 ( d[i+1]=d[i]+1 )
其中d[i]表示以i结尾的最长的o的长度,
所以本题答案就是 E( sigma d[i]*d[i]-d[i-1]*d[i-1] (d[i]=d[i-1]+1) ) = E( sigma 2*d[i-1]+1 (d[i]=d[i-1]+1) )
而上面那个d[i]=d[i-1]+1的等价条件是第i格不是x,这个可以在转移时候判断,于是答案变成了一些2*d[i-1]+1的期望的和.
bzoj 3450 期望分数的更多相关文章
- Bzoj 3450: Tyvj1952 Easy (期望)
Bzoj 3450: Tyvj1952 Easy 这里放上题面,毕竟是个权限题(洛谷貌似有题,忘记叫什么了) Time Limit: 10 Sec Memory Limit: 128 MB Submi ...
- bzoj4318 OSU!和bzoj 3450 Tyvj1952 Easy
这俩题太像了 bzoj 3450 Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点 ...
- bzoj 3450 Tyvj1952 Easy (概率dp)
3450: Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败 ...
- Bzoj 3450: Tyvj1952 Easy 期望/概率,动态规划
3450: Tyvj1952 Easy Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 431 Solved: 325[Submit][Status] ...
- BZOJ 3450 Tyvj1952 Easy(期望)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3450 [题目大意] 给出一个字符串,包含o,x和?,一个字符串的得分为 每段连续的o的 ...
- BZOJ 3450: Tyvj1952 Easy 数学期望
Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...
- BZOJ.3450.(JoyOI1952) Easy(期望)
题目链接 /* 设f[i]为到i的期望得分,c[i]为到i的期望连续长度 则若s[i]=='x',f[i]=f[i-1], c[i]=0 s[i]=='0',f[i]=f[i-1]+2*c[i-1]+ ...
- BZOJ 3450 Tyvj1952 Easy ——期望DP
维护$x$和$x^2$的期望递推即可 #include <map> #include <ctime> #include <cmath> #include <q ...
- 【概率】BZOJ 3450:Tyvj1952 Easy
Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连 ...
随机推荐
- openstack swift节点安装手册1-节点配置
本文参照官方教程:http://docs.openstack.org/project-install-guide/object-storage/draft/environment-networking ...
- js使用中的小问题----textarea是否有value属性
使用jquery的选择器时想给textarea设置一个默认值时,采取了下面的方法: 不过失败了,但是看教程上确实成功的,那么肯定是有问题的. 经过上网查找以及自己验证发现: 1.textarea标签确 ...
- elk系统通过nginx添加对kibana的登录认证
elk系统添加对kibana的登录认证 关于elk系统的安装配置可以参考:Centos6.5安装Logstash ELK stack 日志管理系统及使用详解 http://blog.csdn.net/ ...
- MySQL中adddate学习
-- 修改时间:ADDDATE(date,INTERVAL expr unit) -- 含义:date时间,expr 表达式值,unit表达式对应的时间单位 -- unit : SECOND,MINU ...
- Ex 6_21 最小点覆盖问题_第八次作业
子问题定义: 对于图中的每个结点,有两种状态,即属于最小点覆盖和不属于最小点覆盖,定义minSet[i][0]表示结点i属于点覆盖,并且以i为根的树的最小点覆盖的大小.minSet[i][1]表示点i ...
- OCM_第十天课程:Section5—》数据仓库
注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...
- 一个简单 JDK 动态代理的实例
动态代理的步骤: 创建一个实现了 InvocationHandler 接口的类,必须重写接口里的 invoke()方法. 创建被代理的类和接口 通过 Proxy 的静态方法 newProxyInsat ...
- alt-opt and end2end
关于两种训练方式的不同,论文中一种是4阶段训练,这种容易理解,还有一种是近似联合训练, 参考:http://jacobkong.github.io/posts/3802700508/ 关于两种训练方式 ...
- Redis五大数据类型以及操作
目录: 一.redis的两种链接方式 二.redis的字符串操作(string) 三.redis的列表操作(list) 四.redis的散列表操作(类似于字典里面嵌套字典) 五.redis的集合操作( ...
- 保存 laravel model 而不更新 timestamps 的方法
$product = Product::find(1); $product->view_count += 1; $product->timestamps = false; $product ...