https://www.lydsy.com/JudgeOnline/problem.php?id=3930

https://blog.csdn.net/ws_yzy/article/details/50966171

求从区间[L,H]中可重复的选出n个数使其gcd=k的方案数

就是,莫比乌斯反演,我抄的代码所以没有提前求莫比乌斯函数。

自乘的倍数个方案要去掉。现在想想我最后自己想出来的代码好像是没问题的但是我忘了加上唯一的一个自乘特判情况了,wa了太多次最后没忍住读(抄)了一份ac代码,还是意志不够坚定也不够细心。

emmmm现在发现似乎好久没有写博客了呢。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define LL long long
const LL maxn=;
const LL p=(int)1e9+;
LL n,k,l,r;
LL ans[maxn]={};
LL mpow(LL x,LL y){
LL z=;
while(y){
if(y&)z=(z*x)%p;
x=(x*x)%p;
y>>=;
}
return z;
}
int main(){
scanf("%lld%lld%lld%lld",&n,&k,&l,&r);
LL a=r/k,b=l/k;if(l%k)++b;
for(LL i=r-l;i>=;--i){
LL ww=a/i-b/i; if(b%i==)++ww;
if(ww<=)continue;
ans[i]=(mpow(ww,n)-(ww%p)+p)%p;
for(int j=*i;j<=r-l;j+=i)ans[i]=(ans[i]-ans[j]+p)%p;
}
if(b==)ans[]=(ans[]+)%p;
printf("%lld\n",ans[]);
return ;
}

BZOJ 3930: [CQOI2015]选数 莫比乌斯反演的更多相关文章

  1. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  2. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  3. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  4. 【刷题】BZOJ 3930 [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  5. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  6. bzoj 3930: [CQOI2015]选数【递推】

    妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...

  7. 【递推】BZOJ 3930: [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  8. bzoj 3930: [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  9. luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛

    link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...

随机推荐

  1. .Net Core中使用RabbitMQ

    (1).引入依赖 RabbitMQ.Client (2).编写发布者代码 var connectionFactory = new ConnectionFactory() { HostName=&quo ...

  2. Pycharm 字体大小调整

    Pycharm 字体大小调整 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/awyyauqpmy/article/details/79334496P ...

  3. js 当前时区

    function formatDateTime(formatDate){ //13位时间戳,java js. (php时间戳为10位) var returnDate; if(formatDate == ...

  4. 转载:Java的四种引用方式

    原文:https://www.cnblogs.com/huajiezh/p/5835618.html Java内存管理分为内存分配和内存回收,都不需要程序员负责,垃圾回收的机制主要是看对象是否有引用指 ...

  5. asp.net core 通过ajax上传图片及wangEditor图片上传

    asp.net core 通过ajax上传图片 .net core前端代码,因为是通过ajax调用,首先要保证ajax能调用后台代码,具体参见上一篇.net core 使用ajax调用后台代码. 前端 ...

  6. 使用JSONP实现跨域通信

    引语 Ajax 允许在不干扰 Web 应用程序的显示和行为的情况下在后台进行数据检索.Ajax 允许在不干扰 Web 应用程序的显示和行为的情况下在后台进行数据检索.由于受到浏览器的限制,该方法不允许 ...

  7. hdu3530 双单调队列的维护

    单调队列有部分堆的功能,但其只能维护给定区间中比v大的值或者比v小的值,且其一般存储元素的下标. 思路:两个单调队列维护最大值与最小值的下标,如果区间的最大值最小值之差大于给定范围,则选择队首靠左的删 ...

  8. HTML5布局

    完整示例 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...

  9. .NetCore源码阅读笔记系列之HttpAbstractions(五) Authentication

    说道认证&授权其实这块才是核心,这款跟前面Security这块有者紧密的联系,当然 HttpAbstractions 不光是认证.授权.还包含其他Http服务和中间价 接下来先就认证这块结合前 ...

  10. [转] 由Request Method:OPTIONS初窥CORS

    刚接触前端的时候,以为HTTP的Request Method只有GET与POST两种,后来才了解到,原来还有HEAD.PUT.DELETE.OPTIONS…… 目前的工作中,HEAD.PUT.DELE ...