洛谷4718【模板】Pollard-Rho算法
Description:
给定T个数,分别求出它们的最大质因数
Solution:
其实大概框架是很容易想到的
对于一个数n
找到它的一个因数x 判断这个因数是不是质数 如果是质数就更新答案
如果不是 就分别分解x与n/x
找因数用Pollar-Rho 判质数用Miller-Rabin
细节看代码QAQ
Code:
#include<bits/stdc++.h>
#define Rg register
#define go(i,a,b) for(Rg int i=a;i<=b;i++)
#define yes(i,a,b) for(Rg int i=a;i>=b;i--)
#define il inline
#define ll long long
#define ld long double
#define ull unsigned long long
using namespace std;
il ll read()
{
ll x=,y=;char c=getchar();
while(c<''||c>''){if(c=='-')y=-;c=getchar();}
while(c>=''&&c<=''){x=(x<<)+(x<<)+c-'';c=getchar();}
return x*y;
}
int T;
ll n,ans;
//-----------快速乘 快速幂 gcd f函数(生成下一个随机数的函数)
il ll mul(ll x,ll y,ll z)//一个超级快的快速乘
{
ll sm=(ld)x/z*y;
return ((ull)x*y-(ull)sm*z+z)%z;
}
il ll ksm(ll x,ll y,ll z)
{
ll ans=;
while(y)
{if(y&)ans=mul(ans,x,z);x=mul(x,x,z);y>>=;}
return ans;
}
il ll f(ll x,ll g,ll y){return (mul(x,x,y)+g)%y;}
il ll gcd(ll x,ll y){return y==?x:gcd(y,x%y);}
//-----------Miller-rabin判质数
il bool rabin(ll x,ll y)
{
if(ksm(x,y-,y)!=)return ;//费马小定理
ll z=y-,sm;
while(!(z&))
{
z>>=;sm=ksm(x,z,y);
if(sm!=&&sm!=y-)return ;//二次探测
if(sm==y-)return ;
}return ;
}
il bool miller(ll x)
{
if(x==||x==||x==||x==||x==)return ;
if(x==)return ;
return rabin(,x)&&rabin(,x)&&rabin(,x)&&rabin(,x)&&rabin(,x);
}
//-------------Pollard-Rho算法的主体
/*这里所写的Pollard-Rho算法不是最朴素的版本
是一个更快更好的版本
1.不是每次算出下一个随机数之后都算gcd,而是把算的这些数都乘起来(当然要%一下x)
累计了一定量的数之后再求一次gcd 这样就大大减少了求gcd的次数从而提高速度
这里选定的是127个数累计起来求一次gcd 为什么是127呢 因为它是个好数字(我也不知道)
2.上面的优化有局限性 就是很有可能环比较小 没到127个数就出现环 这样即使已经出现过含x因数的数也会跳出循环
遇到这样的情况就会拖慢速度 甚至永远都算不出来
这里可以用一个倍增的方法解决这个问题 分别在生成(1,2,4,8,16,32,64...)个数的时候算一次gcd
*/
il ll Pollard(ll x)
{
ll a,b,d,g,y,i,j;
while()
{
a=b=rand()%x;g=rand()%x;y=;i=;j=;
while(++i)
{
a=(mul(a,a,x)+g)%x;y=mul(y,abs(a-b),x);
if(a==b||!y)break;
if(i<||i==j)
{
d=gcd(x,y);if(d>&&d!=x)return d;
if(i==j)b=a,j<<=;
}
}
}
}
//------------递归找最小质因子
il void find(ll x)
{
if(x<=ans)return;//最优性剪枝
if(miller(x)){ans=x;return;}
ll y=Pollard(x);while(x%y==)x/=y;//判定质数 更新答案
find(y);find(x);//继续寻找
}
int main()
{
T=(int)read();
while(T--)
{
n=read();ans=;find(n);
if(ans==n){printf("Prime\n");continue;}
printf("%lld\n",ans);
}
return ;
}
洛谷4718【模板】Pollard-Rho算法的更多相关文章
- Pollard Rho算法浅谈
Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机 ...
- Pollard Rho 算法简介
\(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点 ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 1044 Solved: 322[Submit][ ...
- 初学Pollard Rho算法
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
随机推荐
- python 模块之-hashlib
python 模块hashlib import hashlib m=hashlib.md5() # 生成MD5加密对象 m.update('jiami-string'.encode(' ...
- Django-website 程序案例系列-12 CSRF
django为用户实现防止跨站请求伪造的功能 需要配置settings.py: django.middleware.csrf.CsrfViewMiddleware 1. form表单提交 <f ...
- LOJ6045 雅礼集训 2017 Day8 价(最小割)
由Hall定理,任意k种减肥药对应的药材数量>=k.考虑如何限制其恰好为k,可以将其看作是使对应的药材数量尽量少. 考虑最小割.建一个二分图,左边的点表示减肥药,右边的点表示药材.减肥药和其使用 ...
- hdu 3911 Black And White (线段树 区间合并)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3911 题意: 给你一段01序列,有两个操作: 1.区间异或,2.询问区间最长的连续的1得长度 思路: ...
- bzoj1492/luogu4027 货币兑换 (斜率优化+cdq分治)
设f[i]是第i天能获得的最大钱数,那么 f[i]=max{在第j天用f[j]的钱买,然后在第i天卖得到的钱,f[i-1]} 然后解一解方程什么的,设$x[j]=\frac{F[j]}{A[j]*Ra ...
- numpy 从入门到遗忘
不常用的函数总是遗忘,很是困扰啊.于是痛下时间,做一个系统的总结,纯原创,都是些实际项目中常用的函数和方法,当然还有一些这边也是没有记录的,因为我在实际数据处理过程中也没有遇到过(如字符串处理等等). ...
- pandas 从入门到遗忘
读取大文件(内存有限): import pandas as pd reader = pd.read_csv("tap_fun_test.csv", sep=',', iterato ...
- Looper Handler Mssage
1. 一个Handler只有一个队列;2. 在调用Handler.post(Runnable runnable)方法时,会将runnable封装成一个Message;3. 在队列执行时,会判断当前的M ...
- poj 2763(RMQ+BIT\树链剖分)
传送门:Problem 2763 https://www.cnblogs.com/violet-acmer/p/9686774.html 题意: 一对夫妇居住在xx村庄,小屋之间有双向可达的道路,不会 ...
- 【CSS】元素样式
1.使用CSS的三种方式: 方式一.通过元素的style属性来设置元素的样式 方式二.在HTML头部标签<head>中通过<link>标签引入一个外部的CSS资源,通常是一个C ...