这道题先考虑一种暴力n方做法

设\(f_i\)表示到\(i\)点所有情况的困难度之和(\(f_0=0\)),\(pre_i=\sum_{j=1}^{i} a_j\)

考虑从点\(j\)中途不经过休息站到达\(i\),可以得到$$f_i=pre_i+\ \sum_{j=1}^{i-1} f_j+2^{j-1}pre_{i-j}$$

(要乘\(2^{j-1}\)是因为到第\(j\)个点有那么多方案)

这个很容易就能优化到\(O(n)\)

记\(g_i=\sum_{j=1}^{i} f_j,h_i=pre_i+\sum_{j=1}^{i-1} 2^{j-1}pre_{i-j}=\sum_{j=1}^{i}2^{i-j}a_j=2h_{i-1}+a_i\)

所以$$f_i=g_{i-1}+h_i$$

直接\(O(n)\)救星了,也不要多开数组

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double using namespace std;
const int mod=998244353,N=1000000+10;
il LL rd()
{
re LL x=0,w=1;re char ch;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
LL n,a[N],an,ss,bb; //乱定变量名(逃 int main()
{
n=rd();
for(int i=1;i<=n;i++) a[i]=rd();
for(int i=1;i<=n;i++)
{
bb=((bb<<1)%mod+a[i])%mod;
an=(ss+bb)%mod;
ss=(ss+an)%mod;
}
printf("%lld\n",an);
return 0;
}

CF1009E [Intercity Travelling]的更多相关文章

  1. E. Intercity Travelling

    E. Intercity Travelling time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...

  2. Codeforces D. Intercity Travelling(区间组合)

    题目描述: D. Intercity Travelling time limit per test 1.5 seconds memory limit per test 256 megabytes in ...

  3. Codeforces 1009 E. Intercity Travelling(计数)

    1009 E. Intercity Travelling 题意:一段路n个点,走i千米有对应的a[i]疲劳值.但是可以选择在除终点外的其余n-1个点休息,则下一个点开始,疲劳值从a[1]开始累加.休息 ...

  4. Educational Codeforces Round 47 (Rated for Div. 2)E.Intercity Travelling

    题目链接 大意:一段旅途长度N,中间可能存在N-1个休息站,连续走k长度时,疲劳值为a1+a2+...+aka_1+a_2+...+a_ka1​+a2​+...+ak​,休息后a1a_1a1​开始计, ...

  5. CodeForces - 1009E Intercity Travelling

    题面在这里! 可以发现全是求和,直接拆开算贡献就好了 #include<bits/stdc++.h> #define ll long long using namespace std; c ...

  6. Educational Codeforces Round 47 (Rated for Div. 2) :E. Intercity Travelling

    题目链接:http://codeforces.com/contest/1009/problem/E 解题心得: 一个比较简单的组合数学,还需要找一些规律,自己把方向想得差不多了但是硬是找不到规律,还是 ...

  7. Intercity Travelling CodeForces - 1009E (组合计数)

    大意: 有一段$n$千米的路, 每一次走$1$千米, 每走完一次可以休息一次, 每连续走$x$次, 消耗$a[1]+...+a[x]$的能量. 休息随机, 求消耗能量的期望$\times 2^{n-1 ...

  8. 1009E Intercity Travelling 【数学期望】

    题目:戳这里 题意:从0走到n,难度分别为a1~an,可以在任何地方休息,每次休息难度将重置为a1开始.求总难度的数学期望. 解题思路: 跟这题很像,利用期望的可加性,我们分析每个位置的状态,不管怎么 ...

  9. Codeforces 1009E Intercity Travelling | 概率与期望

    题目链接 题目大意: 一个人要从$A$地前往$B$地,两地相距$N$千米,$A$地在第$0$千米处,$B$地在第$N$千米处. 从$A$地开始,每隔$1$千米都有$\dfrac{1}{2}$的概率拥有 ...

随机推荐

  1. zookeeper 四字命令

    zookeeper四字命令   ZooKeeper3.4.6支持某些特定的四字命令字母与其的交互.它们大多是查询命令,用来获取 ZooKeeper 服务的当前状态及相关信息.用户在客户端可以通过 te ...

  2. Web项目替换jar包中的文件的方法

    经常遇到这样的问题,需要修改jar包中的方法.应该如何做? 1.有些很人性化的框架jar包,比如SpringSecurity,可以修改配置文件指定一个新建的类,让类实现Jar包中的对应的接口就好了. ...

  3. itexpdf同一个段落不同文字,如何设置不同的格式

    Java使用itexpdf生成PDF,正常情况下,新建一个段落Paragraph,然后可以给段落添加一个格式BaseFont Paragraph paragraphBlue = new Paragra ...

  4. pip常用命令、配置pip源

    1.查找软件 # pip search Package 2.安装软件 # pip install Package # pip install -r requirements.txt 3.更新软件 # ...

  5. Luogu 1080 【NOIP2012】国王游戏 (贪心,高精度)

    Luogu 1080 [NOIP2012]国王游戏 (贪心,高精度) Description 恰逢H国国庆,国王邀请n位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己 ...

  6. A1008. Elevator

    The highest building in our city has only one elevator. A request list is made up with N positive nu ...

  7. 【LOJ#6282】数列分块6

    题目大意:给定一个由 N 个数组成的序列,维护两种操作:单点询问,单点插入.N < 100000 题解:在块内维护一个链表,支持动态插入数字,同时对于非随即数据来说,若块的大小过大,需要重构. ...

  8. 使用electron为贪吃蛇游戏创建全局快捷键

    上图就是我们的简体版贪吃蛇游戏,我们可以看到使用键盘上面的上下左右可以对贪吃蛇进行控制. The picture above is our simplified version of Snake Ea ...

  9. Eclipse导入jdk的源码

    eclipse导入JDK源码 前言:这件事情的重要性不言而喻,对于学习和观摩优秀的代码非常的有用,我喜欢想看什么代码都能 Ctrl+鼠标一点 就能够看到,不过这个不常操作,在这里小记一笔,以备后用.( ...

  10. MySQL常用辅助语句

    查看索引: mysql> show index from user_info; +-----------+------------+----------+--------------+----- ...