problem1 link

令$f(x)$表示[0,x]中答案的个数。那么题目的答案为$f(b)-f(a-1)$

对于$f(x)$来说,假设$x$有$d$位数字,即$[0,d-1]$,那么可以进行动态规划,令$dp(i,s)$表示已经考虑了$[i,d-1]$位的数字,状态为$s$的方案数。状态需要五种:

0: 前面都是0

1: 前面不都是0,前高位数字小于$x$且未出现非4,7的数字

2: 前面不都是0,前高位数字等于$x$且未出现非4,7的数字
3: 前面不都是0,前高位数字小于$x$且出现非4,7的数字
4: 前面不都是0,前高位数字等于$x$且出现非4,7的数字

problem2 link

首先,只包含4和7的数字并不多。即便$a=1,b=10^{10}$,这中间的只包含的4,7的数字也只有$2^{1}+2^{2}+...+2^{10}$个。

假设预计算出这些数字存储在数组$A$中

那么从贪心的角度看,Join枚举的区间的开始一定是$A_{i}-bLen+1$,而 Brus枚举的区间一定是从$A_{j}+1$开始。

problem3 link

设$n$的$B$进制表示为$n=\sum_{i=0}^{K}a_{i}B^{i},a_{i}<B$

首先,当$K$较大时$B$会很小。因此可以分为三类分别计算:

(1) $K=1$。即$n=a*B+b$。枚举$a,b$,判断$B$是否存在即可。

(2) $K=2$。即$n=a*B^{2}+b*B+c$。枚举$a,b,c$然后判断是否存在$B$。这里可以进行的一个优化是:假设枚举了$a,b$,那么对于连续枚举的两个c,比如$c_{1},c_{2},c_{1}<c_{2}$来说,假如$a*B_{1}^{2}+b*B_{1}+c_{1}=n,a*B_{2}^{2}+b*B_{2}+c_{2}=n$,那么$B_{1}>B_{2}$。所以如果$a*B_{1}^{2}+b*B_{1}+c_{2}<n $,那么对于$(a,b,c_{2})$来说,必然没有对应的$B$的解

(3) $K \ge 3$。直接枚举$B$,判断得到的$a_{i}$是否都是lucky-number即可。

(这一道python跑不过,用了Java)

code for problem1

class TheAlmostLuckyNumbersDivOne:

    def find(self, a, b):
return self.calculate(b) - self.calculate(a - 1) def calculate(self, a):
print a
if a == 0:
return 1
d = []
while a != 0:
d.append(a % 10)
a /= 10
n = len(d)
f = self.newArray2D(n, 5, 0)
for i in range(d[n - 1] + 1):
if i == 0:
f[n - 1][0] += 1
elif i == d[n - 1]:
if i == 4 or i == 7:
f[n - 1][2] += 1
else:
f[n - 1][4] += 1
else:
if i == 4 or i == 7:
f[n - 1][1] += 1
else:
f[n - 1][3] += 1 for i in range(n - 2, -1, -1):
t = d[i]
for j in range(10):
if j == 0:
f[i][0] += f[i + 1][0]
f[i][3] += f[i + 1][1]
if j == t:
f[i][4] += f[i + 1][2]
elif j < t:
f[i][3] += f[i + 1][2]
elif j == 4 or j == 7:
f[i][1] += f[i + 1][0]
f[i][1] += f[i + 1][1]
if j == t:
f[i][2] += f[i + 1][2]
f[i][4] += f[i + 1][4]
elif j < t:
f[i][1] += f[i + 1][2]
f[i][3] += f[i + 1][4]
f[i][3] += f[i + 1][3] else:
f[i][3] += f[i + 1][0]
f[i][3] += f[i + 1][1]
if j == t:
f[i][4] += f[i + 1][2]
elif j < t:
f[i][3] += f[i + 1][2] return f[0][0] + f[0][1] + f[0][2] + f[0][3] + f[0][4] def newArray2D(self, n, m, init):
f = [0] * n
for i in range(n):
f[i] = [init] * m
return f

  

code for problem2

class TheLuckyGameDivOne:

    f = []
fLen = 0
a = 0
b = 0
jLen = 0
bLen = 0
cache = [] def generateLuckyNumber(self, x):
if x > self.b:
return
if x >= self.a:
self.f.append(x)
self.generateLuckyNumber(x * 10 + 4)
self.generateLuckyNumber(x * 10 + 7) def binarySearch(self, key):
if self.f[0] > key:
return 0
if self.f[self.fLen - 1] <= key:
return self.fLen
low = 0
high = self.fLen - 1
maxIndex = 0
while low <= high:
mid = (low + high) >> 1
if self.f[mid] <= key:
maxIndex = max(maxIndex, mid)
low = mid + 1
else:
high = mid - 1
return maxIndex + 1 def calculate(self, start, end):
result = self.binarySearch(start + self.bLen - 1) - self.binarySearch(start - 1)
for i in range(self.fLen):
bStart = self.f[i] + 1
bEnd = bStart + self.bLen - 1
if start <= bStart and bEnd <= end:
result = min(result, self.cache[i])
return result def init(self):
self.cache = [0] * self.fLen for i in range(self.fLen):
bStart = self.f[i] + 1
bEnd = bStart + self.bLen - 1
self.cache[i] = self.binarySearch(bEnd) - self.binarySearch(bStart - 1) def find(self, a, b, jLen, bLen):
self.a = a
self.b = b
self.jLen = jLen
self.bLen = bLen
self.generateLuckyNumber(0) self.f.sort()
if len(self.f) == 0:
return 0 self.fLen = len(self.f)
self.init() result = 0
for i in range(self.fLen + 1):
start = a
if i < self.fLen:
start = self.f[i] - bLen + 1
end = start + jLen - 1
if a <= start and end <= b:
result = max(result, self.calculate(start, end))
return result

  

code for problem3

import java.util.*;
import java.math.*;
import static java.lang.Math.*; public class TheLuckyBasesDivOne { List<Long> f = new ArrayList<>();
long n; void generateLuckyNumber(Long x) {
if (x > n) {
return;
}
if (x > 0) {
f.add(x);
}
generateLuckyNumber(x * 10 + 4);
generateLuckyNumber(x * 10 + 7);
} static boolean isLucky(Long x) {
if (x == 0) {
return false;
}
while (x > 0) {
if (x % 10 != 4 && x % 10 != 7) {
return false;
}
x /= 10;
}
return true;
} long calculate4() {
long result = 0;
for (long base = 2;;++ base) {
int num = 0;
boolean tag = true;
long x = n;
while (x > 0) {
tag = tag && isLucky(x % base);
num += 1;
x /= base;
}
if (num <= 3) {
break;
}
if (tag) {
result += 1;
}
}
return result;
} long searchMax(long a, long b, long c) {
long low = 0;
long high = (long)Math.sqrt(n) + 1;
long result = 0;
while (low <= high) {
long mid = (low + high) >> 1;
if (a <= n / mid && a * mid <= n / mid && b <= n / mid
&& a * mid * mid + b * mid + c <= n) {
result = Math.max(result, mid);
low = mid + 1;
}
else {
high = mid - 1;
}
}
return result;
} long calculate3() {
long result = 0;
for (long a : f) {
long B0 = a + 1;
if (a > n / B0 || a * B0 > n / B0) {
break;
}
for (long b : f) {
long B1 = Math.max(B0, b + 1);
if (a > n / B1 || a * B1 > n / B1
|| b * B1 > n || a * B1 * B1 + b * B1 > n) {
break;
}
long pre = -1;
for (long c : f) {
long B2 = Math.max(B1, c + 1);
if (a > n / B2 || a * B2 > n / B2
|| b * B2 > n || a * B2 * B2 + b * B2 + c > n) {
break;
}
if (pre != -1 && a * pre * pre + b * pre + c < n) {
continue;
}
pre = searchMax(a, b, c);
if (a * pre * pre + b * pre + c == n) {
result += 1;
}
}
}
}
return result;
} long calculate2() {
long result = 0;
for (long a : f) {
if (a * (a + 1) > n) {
break;
}
for (long b : f) {
long B = Math.max(a, b) + 1;
if (a > n / B || a * B + b > n) {
break;
}
long t = n - b;
if (t % a == 0 && t / a > a && t / a > b) {
result += 1;
}
}
}
return result;
}
public long find(long n) {
if (isLucky(n)) {
return -1;
} this.n = n;
generateLuckyNumber(0L);
Collections.sort(f); return calculate2() + calculate3() + calculate4();
}
}

  

topcoder srm 510 div1的更多相关文章

  1. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  2. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  3. topcoder srm 714 div1

    problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...

  4. topcoder srm 738 div1 FindThePerfectTriangle(枚举)

    Problem Statement      You are given the ints perimeter and area. Your task is to find a triangle wi ...

  5. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  6. Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串

    Problem Statement      The Happy Letter game is played as follows: At the beginning, several players ...

  7. Topcoder SRM 584 DIV1 600

    思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...

  8. TopCoder SRM 605 DIV1

    604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...

  9. topcoder srm 575 div1

    problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其 ...

随机推荐

  1. Linux 安装Eclipse

    安装Eclipse 场景: 我用的是笔记本(Windows系统),我在笔记本上安装了虚拟机,在 虚拟机中安装了Linux系统,使用的镜像是:CentOS-6.6-x86_64-bin-DVD1.iso ...

  2. Oracle / PLSQL函数 - LENGTH和LENGTHB

    1.LENGTH( string1 ) 2.LENGTHB( string1 ) 在oracle中,这两个函数都有差不多意思,最大的区别在于:length 求得是字符长度,lengthb求得是字节长度 ...

  3. Chrome 扩展

    http://www.cnblogs.com/coco1s/p/8004510.html

  4. smtp常见问题

    http://blog.csdn.net/chenfei_5201213/article/details/10138969

  5. CentOS上svn checkout时报错SSL handshake failed: SSL error: Key usage violation in certificate has been det

    局域网安装了个SVN在checkout的时候报错 SSL handshake failed: SSL error: Key usage violation in certificate has bee ...

  6. jdk自动安装java_home 无法修改解决方法

    使用命令行修改 cmd下set java_home=D:\soft\java\jdk1.7.0_72 搞定

  7. Marlin 溫度 sensor 校正

    Marlin 溫度 sensor 校正 使用 Type-K 溫度計 將探針綑綁在加熱頭側面 開啟Marlin-Marlin_v1\Marlin\thermistortables.h 要修改的溫度對應表 ...

  8. SpringMVC探究-----常用获取传递参数的方法

       1.@RequestParam @RequestParam 常用来映射请求参数,它有三个属性可以配置: value 值即请求参数的参数名 required 该参数是否必须. 默认为 true d ...

  9. JavaScript--详解typeof的用法

    typeof定义      typeof是一元运算符,用来返回操作参数的类型(不是值)    检查一个变量是否存在,是否有值      typeof在两种情况下会返回"undefined&q ...

  10. c++学习笔记(六)- vector使用和内存分配

    -----------------------------2019/01/15------------------------------- 复习了下迭代器,其实c++参考里讲的很清楚,主要需要辨析规 ...