bzoj4709 柠檬 单调栈,DP,斜率优化
/*
思路
s是值等于a[i]的前缀和
转移方程$f[i]=max(f[i],f[j-1]+a[i]*(s[i]-s[j]+1)*(s[i]-s[j]+1))$
不难写出暴力方程(by wxyww)
//@baoli
memset(f,-0x3f,sizeof(f));
f[0]=0;
for(int i=1;i<=n;++i) {
for(int j=1;j<=i;++j) {
if(a[i]==a[j]) {
f[i]=max(f[i],f[j-1]+a[i]*(s[i]-s[j]+1)*(s[i]-s[j]+1));
}
}
}
关于此题的单调性
特性1
每一段分出来的都一定是两端相同的,显然
特性2
他满足斜率单调,也就是要维护凸包
ll X(int i) {return 2LL*a[i]*s[i];}
ll Y(int i) {return f[i-1]+1LL*a[i]*s[i]*s[i]-2LL*a[i]*s[i];}
特性3
如果\(j<k\)且\(f_{j-1}+a{i}*(s{i}-s{j}+1)^2 > f{k-1}+a{i}*(s{i}-s{k}+1)^2\)
显然,f和s都是单增的
那么对于i以后的点都是j决策大于k决策
为何?显然(我只能这样说),大概可以理解为\(s{i}-s{j}\)的变化量比\(s{i}-s{k}\)大0
总结思路,把他们用栈一起维护起来就是了?
错误
全程懵逼
代码
#include <cstdio>
#include <vector>
#define ll long long
using namespace std;
const int N=1e5+7;
int n,a[N],s[N],vis[N],top[N];
ll f[N];
vector<int> q[N];
ll X(int i) {return 2LL*a[i]*s[i];}
ll Y(int i) {return f[i-1]+1LL*a[i]*s[i]*s[i]-2LL*a[i]*s[i];}
long double calc(int j,int k) {return (Y(k)-Y(j))/(long double)(X(k)-X(j));}
ll dp(int i,int j) {return f[j-1]+(ll)a[i]*(s[i]-s[j]+1)*(s[i]-s[j]+1);}
int main() {
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%d",&a[i]),s[i]=++vis[a[i]];
for(int i=1;i<=n;++i) if(!q[a[i]].size()) q[a[i]].push_back(0);
for(int i=1;i<=n;++i) {
ll p=a[i];
while(top[p]>1 && calc(q[p][top[p]],q[p][top[p]-1]) <= calc(q[p][top[p]],i))
top[p]--,q[p].pop_back();
top[p]++;q[p].push_back(i);
while(top[p]>1 && calc(q[p][top[p]],q[p][top[p]-1]) <= s[i])
top[p]--,q[p].pop_back();
f[i]=dp(i,q[p][top[p]]);
}
printf("%lld\n", f[n]);
return 0;
}
bzoj4709 柠檬 单调栈,DP,斜率优化的更多相关文章
- LOJ #2769 -「ROI 2017 Day 1」前往大都会(单调栈维护斜率优化)
LOJ 题面传送门 orz 斜率优化-- 模拟赛时被这题送走了,所以来写篇题解( 首先这个最短路的求法是 trivial 的,直接一遍 dijkstra 即可( 重点在于怎样求第二问.注意到这个第二问 ...
- 洛谷 P4697 Balloons [CEOI2011] 单调栈/dp (待补充qwq)
正解:单调栈/dp 解题报告: 先放个传送门qwq 话说这题是放在了dp的题单里呢?但是听说好像用单调栈就可以做掉所以我就落实下单调栈的解法好了qwq (umm主要如果dp做好像是要斜率优化凸壳维护双 ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- APIO2010特别行动队(单调队列、斜率优化)
其实这题一看知道应该是DP,再一看数据范围肯定就是单调队列了. 不过我还不太懂神马单调队列.斜率优化…… 附上天牛的题解:http://www.cnblogs.com/neverforget/arch ...
- 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...
- DP斜率优化总结
目录 DP斜率优化总结 任务安排1 任务计划2 任务安排3 百日旅行 DP斜率优化总结 任务安排1 首先引入一道题,先\(O(N^2)\)做法:分别预处理出\(T_i,C_i\)前缀和\(t[i],c ...
- HDU 3507 [Print Article]DP斜率优化
题目大意 给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小.其中\(C_i\) ...
- dp斜率优化
算法-dp斜率优化 前置知识: 凸包 斜率优化很玄学,凭空讲怎么也讲不好,所以放例题. [APIO2014]序列分割 [APIO2014]序列分割 给你一个长度为 \(n\) 的序列 \(a_1,a_ ...
- 【BZOJ-4518】征途 DP + 斜率优化
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 230 Solved: 156[Submit][Status][ ...
随机推荐
- Oracle数据库备份实验笔记[不完整,内容乱]
rman target / log=/orasoft/backup/${DATE}backup1.log <<EOFrun {allocate channel c1 device type ...
- springboot之session、cookie
1- 获取session的方案 session: https://blog.csdn.net/yiifaa/article/details/77542208 2- session什么时候创建? ...
- Unity 异步加载进度条
public class View_LoadingScene : MonoBehaviour { //场景加载进度条对象 public GameObject loadingProgressBar; / ...
- EasyUI表格DataGrid获取数据的方式
第一种方式:直接返回JSON数据 package com.easyuijson.util; import java.text.SimpleDateFormat; import net.sf.js ...
- QNetworkAccessManager
[1]头文件 想要利用QNetworkAccessManager类,必须在pro文件中添加对应库network,如下: QT += network 如果利用的VS + QT开发环境,请参考随笔< ...
- 电脑已连接wifi的密码查询
有时候,想登陆自己家的无线网络(尤其朋友来家里突然要连接无线网络),脑子刹那间一片空白想不起来密码,怎么办呢? 其实,我们可以通过电脑来查看网络的密码,现在分享如何在笔记本电脑上查看连接过的无线网络密 ...
- spring 源码导入eclipse(sts)
一. 准备工作 1.下载安装sts(springsource推荐使用) 下载地址: http://www.springsource.org/downloads/sts-ggts 2.下载安装gradl ...
- tensorflow学习3---mnist
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data '''数据下载''' mnist= ...
- 怎样从外网访问内网Node.js?
本地安装了一个Node.js,只能在局域网内访问,怎样从外网也能访问到本地的Node.js呢?本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Node.js 默认安装的Node.js端口 ...
- yocto doc
Yocto Project Overview and Concepts Manual https://www.yoctoproject.org/docs/2.6.1/overview-manual/o ...