【Spark Java API】broadcast、accumulator
转载自:http://www.jianshu.com/p/082ef79c63c1
broadcast
官方文档描述:
- Broadcast a read-only variable to the cluster, returning a
- [[org.apache.spark.broadcast.Broadcast]] object for reading it in distributed functions.
- The variable will be sent to each cluster only once.
函数原型:
- def broadcast[T](value: T): Broadcast[T]
广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量。广播变量可被用于有效地给每个节点一个大输入数据集的副本。Spark还尝试使用高效地广播算法来分发变量,进而减少通信的开销。 Spark的动作通过一系列的步骤执行,这些步骤由分布式的洗牌操作分开。Spark自动地广播每个步骤每个任务需要的通用数据。这些广播数据被序列化地缓存,在运行任务之前被反序列化出来。这意味着当我们需要在多个阶段的任务之间使用相同的数据,或者以反序列化形式缓存数据是十分重要的时候,显式地创建广播变量才有用。
源码分析:
- def broadcast[T: ClassTag](value: T): Broadcast[T] = {
- assertNotStopped()
- if (classOf[RDD[_]].isAssignableFrom(classTag[T].runtimeClass)) {
- // This is a warning instead of an exception in order to avoid breaking user programs that
- // might have created RDD broadcast variables but not used them:
- logWarning("Can not directly broadcast RDDs; instead, call collect() and "
- + "broadcast the result (see SPARK-5063)")
- }
- val bc = env.broadcastManager.newBroadcast[T](value, isLocal)
- val callSite = getCallSite
- logInfo("Created broadcast " + bc.id + " from " + callSite.shortForm)
- cleaner.foreach(_.registerBroadcastForCleanup(bc))
- bc
- }
实例:
- List<Integer> data = Arrays.asList(5, 1, 1, 4, 4, 2, 2);
- JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data,5);
- final Broadcast<List<Integer>> broadcast = javaSparkContext.broadcast(data);
- JavaRDD<Integer> result = javaRDD.map(new Function<Integer, Integer>() {
- List<Integer> iList = broadcast.value();
- @Override
- public Integer call(Integer v1) throws Exception {
- Integer isum = 0;
- for(Integer i : iList)
- isum += i;
- return v1 + isum;
- }
- });
- System.out.println(result.collect());
accumulator
官方文档描述:
- Create an [[org.apache.spark.Accumulator]] variable of a given type, which tasks can "add"
- values to using the `add` method. Only the master can access the accumulator's `value`.
函数原型:
- def accumulator[T](initialValue: T, accumulatorParam: AccumulatorParam[T]): Accumulator[T]
- def accumulator[T](initialValue: T, name: String, accumulatorParam: AccumulatorParam[T])
- : Accumulator[T]
累加器是仅仅被相关操作累加的变量,因此可以在并行中被有效地支持。它可以被用来实现计数器和sum。Spark原生地只支持数字类型的累加器,开发者可以添加新类型的支持。如果创建累加器时指定了名字,可以在Spark的UI界面看到。这有利于理解每个执行阶段的进程(对于Python还不支持) 。
累加器通过对一个初始化了的变量v调用SparkContext.accumulator(v)来创建。在集群上运行的任务可以通过add或者”+=”方法在累加器上进行累加操作。但是,它们不能读取它的值。只有驱动程序能够读取它的值,通过累加器的value方法。
源码分析:
- def accumulator[T](initialValue: T, name: String)(implicit param: AccumulatorParam[T])
- : Accumulator[T] = {
- val acc = new Accumulator(initialValue, param, Some(name))
- cleaner.foreach(_.registerAccumulatorForCleanup(acc))
- acc
- }
实例:
- class VectorAccumulatorParam implements AccumulatorParam<Vector> {
- @Override
- //合并两个累加器的值。
- //参数r1是一个累加数据集合
- //参数r2是另一个累加数据集合
- public Vector addInPlace(Vector r1, Vector r2) {
- r1.addAll(r2);
- return r1;
- }
- @Override
- //初始值
- public Vector zero(Vector initialValue) {
- return initialValue;
- }
- @Override
- //添加额外的数据到累加值中
- //参数t1是当前累加器的值
- //参数t2是被添加到累加器的值
- public Vector addAccumulator(Vector t1, Vector t2) {
- t1.addAll(t2);
- return t1;
- }
- }
- List<Integer> data = Arrays.asList(5, 1, 1, 4, 4, 2, 2);
- JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data,5);
- final Accumulator<Integer> accumulator = javaSparkContext.accumulator(0);
- Vector initialValue = new Vector();
- for(int i=6;i<9;i++)
- initialValue.add(i);
- //自定义累加器
- final Accumulator accumulator1 = javaSparkContext.accumulator(initialValue,new VectorAccumulatorParam());
- JavaRDD<Integer> result = javaRDD.map(new Function<Integer, Integer>() {
- @Override
- public Integer call(Integer v1) throws Exception {
- accumulator.add(1);
- Vector term = new Vector();
- term.add(v1);
- accumulator1.add(term);
- return v1;
- }
- });
- System.out.println(result.collect());
- System.out.println("~~~~~~~~~~~~~~~~~~~~~" + accumulator.value());
- System.out.println("~~~~~~~~~~~~~~~~~~~~~" + accumulator1.value());
【Spark Java API】broadcast、accumulator的更多相关文章
- 【Spark调优】Broadcast广播变量
[业务场景] 在Spark的统计开发过程中,肯定会遇到类似小维表join大业务表的场景,或者需要在算子函数中使用外部变量的场景(尤其是大变量,比如100M以上的大集合),那么此时应该使用Spark的广 ...
- HBase【操作Java api】
一.导入依赖 创建模块,导入以下依赖,maven默认编译版本是1.5,用1.8编译. pom.xml <dependencies> <dependency> <group ...
- 【Spark调优】提交job资源参数调优
[场景] Spark提交作业job的时候要指定该job可以使用的CPU.内存等资源参数,生产环境中,任务资源分配不足会导致该job执行中断.失败等问题,所以对Spark的job资源参数分配调优非常重要 ...
- 【Spark调优】数据倾斜及排查
[数据倾斜及调优概述] 大数据分布式计算中一个常见的棘手问题——数据倾斜: 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或j ...
- 【高德地图API】从零开始学高德JS API(二)地图控件与插件——测距、圆形编辑器、鼠标工具、地图类型切换、鹰眼鱼骨
原文:[高德地图API]从零开始学高德JS API(二)地图控件与插件——测距.圆形编辑器.鼠标工具.地图类型切换.鹰眼鱼骨 摘要:无论是控件还是插件,都是在一级API接口的基础上,进行二次开发,封装 ...
- 【百度地图API】如何用圆形搜索获取中心点周围100米内全部关键点?如天安门附近所有的餐厅、加油站、宾馆、大厦等
原文:[百度地图API]如何用圆形搜索获取中心点周围100米内全部关键点?如天安门附近所有的餐厅.加油站.宾馆.大厦等 摘要: 在LBS上有这样一个常用的功能,查找附近所有的关键点(POI点,比如标志 ...
- 【Java基础】11、java方法中只有值传递,没有引用传递
public class Example { String testString = new String("good"); char[] testCharArray = {'a' ...
- 【Java基础】4、java中的内部类
内部类的分类:常规内部类.静态内部类.私有内部类.局部内部类.匿名内部类. 实例1:常规内部类 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 ...
- 【Spark调优】Kryo序列化
[Java序列化与反序列化] Java序列化是指把Java对象转换为字节序列的过程:而Java反序列化是指把字节序列恢复为Java对象的过程.序列化使用场景:1.数据的持久化,通过序列化可以把数据永久 ...
随机推荐
- angular5 自定义指令 输入输出 @Input @Output(右键点击事件传递)
指令写法,angular5官网文档给的很详细. 首先要创建一个文件,需注意命名规范(后缀名为xxx.directive.ts): 今天要记录的是在多个li中,右键点击之后显示出对应的菜单,直接上图吧! ...
- 实现在当前的日期上加N天
function getNewDay(dateTemp, days) { var dateTemp = dateTemp.split("-"); var nDate = new D ...
- 实验楼 Linux 基础入门(新版)挑战:寻找文件
传送门:https://www.shiyanlou.com/courses/running 挑战:寻找文件 实验环境: 用户名:shiyanlou 密码:76036575 寻找文件 介绍 有一个非常重 ...
- PHP实现二叉树的深度优先遍历(前序、中序、后序)和广度优先遍历(层次)
前言: 深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次.要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历.中序遍历.后序遍历.具体说明如下: 前序遍 ...
- jquery使用ajax提交form表单
$.ajax({ type: jqform.attr('method'), // 提交方式 get/post url: jqform.attr('action'), // 需要提交的 url data ...
- JSON JAVA 总结
1.如下是我所用json第三方jar包的maven坐标 <!--可引用的jar--> <dependency> <groupId>net.sf.json-lib&l ...
- php 中使用正则
1.匹配一个由一个小写字母和一位数字组成的字符串,比如”z2″ 用^[a-z][0-9]$ 2.当在一组方括号里使用^是,它表示“非”或“排除”的意思 比如要求第一个字符不能是数字:^[^0- ...
- LSOF查看linux中文件打开情况
如何查看linux中文件打开情况 前言 我们都知道,在linux下,“一切皆文件”,因此有时候查看文件的打开情况,就显得格外重要,而这里有一个命令能够在这件事上很好的帮助我们-它就是lsof. lin ...
- Linux安装模式AppImage,Flatpak,Snap整理
本文只谈Linux世界用户较多的前2大主要分支, RedHat Red Hat Enterprise Linux 简称RHEL rpm (RedHat, CentOS, Fedora, Oracle. ...
- URL编码表(收集到的,为了方便查看)
URL编码表