python之pandas用法大全
python之pandas用法大全
更新时间:2018年03月13日 15:02:28 投稿:wdc 我要评论
本文讲解了python的pandas基本用法,大家可以参考下
一、生成数据表
1、首先导入pandas库,一般都会用到numpy库,所以我们先导入备用:
?
1
2
import numpy as np
import pandas as pd
2、导入CSV或者xlsx文件:
?
1
2
df = pd.DataFrame(pd.read_csv('name.csv',header=1))
df = pd.DataFrame(pd.read_excel('name.xlsx'))
3、用pandas创建数据表:
?
1
2
3
4
5
6
7
df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006],
"date":pd.date_range('20130102', periods=6),
"city":['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', 'BEIJING '],
"age":[23,44,54,32,34,32],
"category":['100-A','100-B','110-A','110-C','210-A','130-F'],
"price":[1200,np.nan,2133,5433,np.nan,4432]},
columns =['id','date','city','category','age','price'])
二、数据表信息查看
1、维度查看:
?
1
df.shape
2、数据表基本信息(维度、列名称、数据格式、所占空间等):
?
1
df.info()
3、每一列数据的格式:
?
1
df.dtypes
4、某一列格式:
?
1
df['B'].dtype
5、空值:
?
1
df.isnull()
6、查看某一列空值:
?
1
df.isnull()
7、查看某一列的唯一值:
?
1
df['B'].unique()
8、查看数据表的值:
?
1
df.values
9、查看列名称:
?
1
df.columns
10、查看前10行数据、后10行数据:
?
1
2
df.head() #默认前10行数据
df.tail() #默认后10 行数据
三、数据表清洗
1、用数字0填充空值:
?
1
df.fillna(value=0)
2、使用列prince的均值对NA进行填充:
?
1
df['prince'].fillna(df['prince'].mean())
3、清楚city字段的字符空格:
?
1
df['city']=df['city'].map(str.strip)
4、大小写转换:
?
1
df['city']=df['city'].str.lower()
5、更改数据格式:
?
1
df['price'].astype('int')
6、更改列名称:
?
1
df.rename(columns={'category': 'category-size'})
7、删除后出现的重复值:
?
1
df['city'].drop_duplicates()
8、删除先出现的重复值:
?
1
df['city'].drop_duplicates(keep='last')
9、数据替换:
?
1
df['city'].replace('sh', 'shanghai')
四、数据预处理
?
1
2
3
4
df1=pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006,1007,1008],
"gender":['male','female','male','female','male','female','male','female'],
"pay":['Y','N','Y','Y','N','Y','N','Y',],
"m-point":[10,12,20,40,40,40,30,20]})
1、数据表合并
?
1
2
3
4
df_inner=pd.merge(df,df1,how='inner') # 匹配合并,交集
df_left=pd.merge(df,df1,how='left') #
df_right=pd.merge(df,df1,how='right')
df_outer=pd.merge(df,df1,how='outer') #并集
2、设置索引列
?
1
df_inner.set_index('id')
3、按照特定列的值排序:
?
1
df_inner.sort_values(by=['age'])
4、按照索引列排序:
?
1
df_inner.sort_index()
5、如果prince列的值>3000,group列显示high,否则显示low:
?
1
df_inner['group'] = np.where(df_inner['price'] > 3000,'high','low')
6、对复合多个条件的数据进行分组标记
?
1
df_inner.loc[(df_inner['city'] == 'beijing') & (df_inner['price'] >= 4000), 'sign']=1
7、对category字段的值依次进行分列,并创建数据表,索引值为df_inner的索引列,列名称为category和size
?
1
pd.DataFrame((x.split('-') for x in df_inner['category']),index=df_inner.index,columns=['category','size']))
8、将完成分裂后的数据表和原df_inner数据表进行匹配
?
1
df_inner=pd.merge(df_inner,split,right_index=True, left_index=True)
五、数据提取
主要用到的三个函数:loc,iloc和ix,loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。
1、按索引提取单行的数值
?
1
df_inner.loc[3]
2、按索引提取区域行数值
?
1
df_inner.iloc[0:5]
3、重设索引
?
1
df_inner.reset_index()
4、设置日期为索引
?
1
df_inner=df_inner.set_index('date')
5、提取4日之前的所有数据
?
1
df_inner[:'2013-01-04']
6、使用iloc按位置区域提取数据
?
1
df_inner.iloc[:3,:2] #冒号前后的数字不再是索引的标签名称,而是数据所在的位置,从0开始,前三行,前两列。
7、适应iloc按位置单独提起数据
?
1
df_inner.iloc[[0,2,5],[4,5]] #提取第0、2、5行,4、5列
8、使用ix按索引标签和位置混合提取数据
?
1
df_inner.ix[:'2013-01-03',:4] #2013-01-03号之前,前四列数据
9、判断city列的值是否为北京
?
1
df_inner['city'].isin(['beijing'])
10、判断city列里是否包含beijing和shanghai,然后将符合条件的数据提取出来
?
1
df_inner.loc[df_inner['city'].isin(['beijing','shanghai'])]
11、提取前三个字符,并生成数据表
?
1
pd.DataFrame(category.str[:3])
六、数据筛选
使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和。
1、使用“与”进行筛选
?
1
df_inner.loc[(df_inner['age'] > 25) & (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']]
2、使用“或”进行筛选
?
1
df_inner.loc[(df_inner['age'] > 25) | (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']].sort(['age'])
3、使用“非”条件进行筛选
?
1
df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id'])
4、对筛选后的数据按city列进行计数
?
1
df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id']).city.count()
5、使用query函数进行筛选
?
1
df_inner.query('city == ["beijing", "shanghai"]')
6、对筛选后的结果按prince进行求和
?
1
df_inner.query('city == ["beijing", "shanghai"]').price.sum()
七、数据汇总
主要函数是groupby和pivote_table
1、对所有的列进行计数汇总
?
1
df_inner.groupby('city').count()
2、按城市对id字段进行计数
?
1
df_inner.groupby('city')['id'].count()
3、对两个字段进行汇总计数
?
1
df_inner.groupby(['city','size'])['id'].count()
4、对city字段进行汇总,并分别计算prince的合计和均值
?
1
df_inner.groupby('city')['price'].agg([len,np.sum, np.mean])
八、数据统计
数据采样,计算标准差,协方差和相关系数
1、简单的数据采样
?
1
df_inner.sample(n=3)
2、手动设置采样权重
?
1
2
weights = [0, 0, 0, 0, 0.5, 0.5]
df_inner.sample(n=2, weights=weights)
3、采样后不放回
?
1
df_inner.sample(n=6, replace=False)
4、采样后放回
?
1
df_inner.sample(n=6, replace=True)
5、 数据表描述性统计
?
1
df_inner.describe().round(2).T #round函数设置显示小数位,T表示转置
6、计算列的标准差
?
1
df_inner['price'].std()
7、计算两个字段间的协方差
?
1
df_inner['price'].cov(df_inner['m-point'])
8、数据表中所有字段间的协方差
?
1
df_inner.cov()
9、两个字段的相关性分析
?
1
df_inner['price'].corr(df_inner['m-point']) #相关系数在-1到1之间,接近1为正相关,接近-1为负相关,0为不相关
10、数据表的相关性分析
?
1
df_inner.corr()
九、数据输出
分析后的数据可以输出为xlsx格式和csv格式
1、写入Excel
?
1
df_inner.to_excel('excel_to_python.xlsx', sheet_name='bluewhale_cc')
2、写入到CSV
?
1
df_inner.to_csv('excel_to_python.csv')
以上就是关于pandas的基本用法,大家可以参考下
python之pandas用法大全的更多相关文章
- python数据处理 pandas用法大全
一.生成数据表 1.首先导入pandas库,一般都会用到numpy库,所以我们先导入备用: import numpy as np import pandas as pd 1 2 2.导入CSV ...
- Python3 pandas用法大全
Python3 pandas用法大全 一.生成数据表 1.首先导入pandas库,一般都会用到numpy库,所以我们先导入备用: import numpy as np import pandas as ...
- pandas用法大全
pandas用法大全 一.生成数据表 1.首先导入pandas库,一般都会用到numpy库,所以我们先导入备用: import numpy as np import pandas as pd12 2. ...
- pandas用法小结
前言 个人感觉网上对pandas的总结感觉不够详尽细致,在这里我对pandas做个相对细致的小结吧,在数据分析与人工智能方面会有所涉及到的东西在这里都说说吧,也是对自己学习的一种小结! pandas用 ...
- 基于 Python 和 Pandas 的数据分析(1)
基于 Python 和 Pandas 的数据分析(1) Pandas 是 Python 的一个模块(module), 我们将用 Python 完成接下来的数据分析的学习. Pandas 模块是一个高性 ...
- python内置函数大全(分类)
python内置函数大全 python内建函数 最近一直在看python的document,打算在基础方面重点看一下python的keyword.Build-in Function.Build-in ...
- Python基础 — Pandas
Pandas -- 简介 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的. Pandas ...
- Python:pandas(二)——pandas函数
Python:pandas(一) 这一章翻译总结自:pandas官方文档--General functions 空值:pd.NaT.np.nan //判断是否为空 if a is np.nan: .. ...
- Python回调函数用法实例详解
本文实例讲述了Python回调函数用法.分享给大家供大家参考.具体分析如下: 一.百度百科上对回调函数的解释: 回调函数就是一个通过函数指针调用的函数.如果你把函数的指针(地址)作为参数传递给另一个函 ...
随机推荐
- HDu4794 斐波那契循环节
题意:Arnold变换把矩阵(x,y)变成((x+y)%n,(x+2*y)%n),问最小循环节 题解:仔细算前几项能看出是斐波那契数论modn,然后套个斐波那契循环节板子即可 //#pragma GC ...
- python-跨域问题
跨域:因为浏览器的同源策略,在你请求返回的时候会进行拦截 jsonp 只能发 get 请求 cors 可以发任何请求 ,在响应时加个响应头就行 同源策略对ajax阻拦 同源策略对src或href属性的 ...
- HDFS shell操作及HDFS Java API编程
HDFS shell操作及HDFS Java API编程 1.熟悉Hadoop文件结构. 2.进行HDFS shell操作. 3.掌握通过Hadoop Java API对HDFS操作. 4.了解Had ...
- 【Java】XML
一.XML XML(Extensible Markup Language),可扩展标记语言,是一种用于标记电子文件使其具有结构性的标记语言. 格式: <?xml version="1. ...
- ActiveMQ使用例子
网上收集的例子:有broker,producer,consumer public class MqApp { public static void main(String[] args) throws ...
- ISO/OSI七层网络参考模型、TCP/IP四层网络模型和教学五层网络模型
一.说明 直接的原因是昨晚<计算机网络(自顶向下方法)>到货了,以为能讲得有些不一样,但看完整本也就是老调地讲过来讲应用层.传输层.网络层.网络接口层.感觉比之谢希仁的<计算机网络& ...
- QPainter、QPainterPath、QBrush
参考资料: https://blog.csdn.net/qq_35488967/article/details/70802973https://blog.csdn.net/wanghualin033/ ...
- zabbix3.4.7集成grafana详细步骤
打开官方网站下载grafana并安装 wget https://s3-us-west-2.amazonaws.com/grafana-releases/release/grafana-5.0.4-1. ...
- laravel composer 安装指定版本以及基本的配置
1 安装指定的 laravel版本 以下的案例是安装5.2版本 composer create-project laravel/laravel=5.2.* --prefer-dist 2 配置 优化相 ...
- Uboot启动流程分析(转载)
最近一段时间一直在做uboot移植相关的工作,需要将uboot-2016-7移植到单位设计的ARMv7的处理器上.正好元旦放假三天闲来无事,有段完整的时间来整理下最近的工作成果.之前在学习uboot时 ...