【LOJ】#2187. 「SHOI2014」三叉神经树
题解
可以发现每次修改的是这个点往上一条连续的链,如果我要把1改成0,需要满足这一段往上的一部分都有两个1
如果我要把0改成1,需要满足这一段往上的部分有两个0
对于每个点记录1的个数,发现我们只会把一棵树的2全部改成1或者把1全部改成2,这样加标记的时候可以同时维护是否全1或者是否全2,用lct维护,修改的时候access一遍,直接在平衡树上二分即可
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define MAXN 1000005
#define eps 1e-10
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
struct node {
int lc,rc,fa,val,lz;
bool all[2];
}tr[MAXN];
int num[MAXN * 2],N,Q,fa[MAXN * 2],d[2];
vector<int> son[MAXN];
bool isRoot(int u) {
if(!tr[u].fa) return true;
return tr[tr[u].fa].lc != u && tr[tr[u].fa].rc != u;
}
bool which(int u) {
return tr[tr[u].fa].lc == u;
}
void addlz(int u,int v) {
tr[u].val += v;
tr[u].lz += v;
tr[u].all[0] = tr[u].all[1] = 0;
if(v == -1) tr[u].all[0] = 1;
if(v == 1) tr[u].all[1] = 1;
}
void pushdown(int u) {
if(tr[u].lz) {
if(tr[u].lc) addlz(tr[u].lc,tr[u].lz);
if(tr[u].rc) addlz(tr[u].rc,tr[u].lz);
tr[u].lz = 0;
}
}
void update(int u) {
for(int i = 0 ; i <= 1 ; ++i) {
tr[u].all[i] = (tr[u].val == i + 1) & tr[tr[u].lc].all[i] & tr[tr[u].rc].all[i];
}
}
void Rotate(int u) {
int v = tr[u].fa,w = tr[v].fa;
if(!isRoot(v)) {(v == tr[w].lc ? tr[w].lc : tr[w].rc) = u;}
int b = (u == tr[v].lc ? tr[u].rc : tr[u].lc);
tr[u].fa = w;tr[v].fa = u;
if(b) tr[b].fa = v;
if(u == tr[v].lc) {tr[u].rc = v;tr[v].lc = b;}
else {tr[u].lc = v;tr[v].rc = b;}
update(v);
}
void Splay(int u) {
static int que[MAXN],tot;
tot = 0;
int x;
for(x = u ; !isRoot(x) ; x = tr[x].fa) {
que[++tot] = x;
}
que[++tot] = x;
for(int i = tot ; i >= 1 ; --i) {
pushdown(que[i]);
}
while(!isRoot(u)) {
if(!isRoot(tr[u].fa)) {
if(which(tr[u].fa) == which(u)) Rotate(tr[u].fa);
else Rotate(u);
}
Rotate(u);
}
update(u);
}
void Access(int u) {
for(int x = 0 ; u ; x = u, u = tr[u].fa) {
Splay(u);
tr[u].rc = x;
update(u);
}
}
void dfs(int u) {
for(int j = 0 ; j < 3 ; ++j) {
if(son[u][j] <= N) {
dfs(son[u][j]);
tr[u].val += (tr[son[u][j]].val >= 2);
tr[son[u][j]].fa = u;
}
else {
tr[u].val += num[son[u][j] - N];
fa[son[u][j] - N] = u;
}
}
if(tr[u].val == 1) tr[u].all[0] = 1;
if(tr[u].val == 2) tr[u].all[1] = 1;
}
void Init() {
read(N);
int a;
for(int i = 1 ; i <= N ; ++i) {
for(int j = 0 ; j < 3 ; ++j) {
read(a);
son[i].pb(a);
}
}
for(int i = 1 ; i <= 2 * N + 1 ; ++i) read(num[i]);
dfs(1);
}
void Solve() {
read(Q);
int v;
d[0] = 1,d[1] = -1;
tr[0].all[0] = tr[0].all[1] = 1;
while(Q--) {
read(v);v -= N;
Access(fa[v]);
Splay(fa[v]);
if(tr[fa[v]].all[num[v]]) {
addlz(fa[v],d[num[v]]);
}
else {
int p = fa[v],res;
while(1) {
res = p;
pushdown(p);
if(tr[p].rc && !tr[tr[p].rc].all[num[v]]) {p = tr[p].rc;continue;}
if(tr[p].val != num[v] + 1) break;
if(tr[p].lc && !tr[tr[p].lc].all[num[v]]) {p = tr[p].lc;continue;}
break;
}
Splay(res);
if(tr[res].rc) addlz(tr[res].rc,d[num[v]]);
tr[res].val += d[num[v]];
update(res);
}
num[v] ^= 1;
Splay(1);
out(tr[1].val >= 2);enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}
【LOJ】#2187. 「SHOI2014」三叉神经树的更多相关文章
- 「SHOI2014」三叉神经树 解题报告
「SHOI2014」三叉神经树 膜拜神仙思路 我们想做一个类似于动态dp的东西,首先得确保我们的运算有一个交换律,这样我们可以把一长串的运算转换成一块一块的放到矩阵上之类的东西,然后拿数据结构维护. ...
- 「SHOI2014」三叉神经树
「SHOI2014」三叉神经树 给你一颗由\(n\)个非叶子结点和\(2n+1\)个叶子结点构成的完全三叉树,每个叶子结点有一个输出:\(0\)或\(1\),每个非叶子结点的输出为自己的叶子结点中较多 ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- [LOJ 2190] 「SHOI2014」信号增幅仪
[LOJ 2190] 「SHOI2014」信号增幅仪 链接 链接 题解 坐标系直到 \(x\) 轴与椭圆长轴平行 点的坐标变换用旋转公式就可以了 因为是椭圆,所以所有点横坐标除以 \(p\) 然后最小 ...
- Loj #2570. 「ZJOI2017」线段树
Loj #2570. 「ZJOI2017」线段树 题目描述 线段树是九条可怜很喜欢的一个数据结构,它拥有着简单的结构.优秀的复杂度与强大的功能,因此可怜曾经花了很长时间研究线段树的一些性质. 最近可怜 ...
- LOJ#2983. 「WC2019」数树
传送门 抄题解 \(Task0\),随便做一下,设 \(cnt\) 为相同的边的个数,输出 \(y^{n-cnt}\) \(Task1\),给定其中一棵树 设初始答案为 \(y^n\),首先可以发现, ...
- loj#2269. 「SDOI2017」切树游戏
还是loj的机子快啊... 普通的DP不难想到,设F[i][zt]为带上根玩出zt的方案数,G[i][zt]为子树中的方案数,后面是可以用FWT优化的 主要是复习了下动态DP #include< ...
- @loj - 2093@ 「ZJOI2016」线段树
目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Yuuka 遇到了一个题目:有一个序列 a1,a2,..., ...
- @loj - 3043@「ZJOI2019」线段树
目录 @description@ @solution@ @accepted code@ @details@ @description@ 九条可怜是一个喜欢数据结构的女孩子,在常见的数据结构中,可怜最喜 ...
随机推荐
- css3让图文不能复制
-webkit-user-select: none; -ms-user-select: none; -moz-user-select: none; -khtml-user-select: none; ...
- Hibernate添加日志--log4j
需要导入 slf4j-log4j12-1.6.2.jar slf4j-api-1.6.2.jar log4j-1.2.16.jar 三个jar文件 编写properties文件,建议将日志输出级别设置 ...
- Linux - iptable 限制 IP 访问端口
iptable 设置iptables 限制特定IP 访问: -A INPUT -s 172.16.2.20 -p tcp -j ACCEPT-A INPUT -s -p tcp -j ACCEPT 设 ...
- luogu P2331 [SCOI2005]最大子矩阵
传送门 \[\huge\mathit{warning}\] \[\small\text{以下说明文字高能,请心脏病,,,,,,人士谨慎观看,请未成年人在家长陪同下观看}\] 皮这一下很开心 其实是代码 ...
- Delphi基础必记-快捷键
快捷键: F12 代码窗口/窗体之间切换Ctrl + Shift + F 查找文件 Ctrl + Shift + G 为接口加入新的GUIDF4 运行到光标位置 F5 设置/取消断点 或用光标点击F7 ...
- Adroid反编译资料收集
Android反编译神器jadx的使用 https://blog.csdn.net/Fisher_3/article/details/78654450 Android 反编译利器,jadx 的高级技巧 ...
- 【BARTS计划】【Tips_Week1】20190331更新
BARTS计划 · Review :每周学习至少一个技术技巧. 一.快捷键 1. 快速批量注释代码的方法:选中需要注释的代码,按 ctrl+/ 二.重要命令行命令 1. 新增文件:git add a. ...
- Java导出txt模板——(一)
导出txt文件时候\r\n才能换行 java代码 package DRDCWordTemplates; import java.io.BufferedWriter; import java.io.Fi ...
- Jetson tk1 hash sum mismatch
sudo apt-get update遭遇Hash Sum Mismatch 修改DNS服务器地址: sudo gedit /etc/resolv.conf 解决办法: 在装有goagent的情况下: ...
- C++读写TXT文件中的string或者int型数据以及string流的用法
对文件的读写操作是我们在做项目时经常用到的,在网上看了很多博客,结合自身的项目经验总结了一下,因此写了这篇博客,有些地方可能直接从别的博客中复制过来,但是都会注明出处. 一.文件的输入输出 fstre ...