一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径。若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图。若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图。若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图。给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不同的最大半连通子图的数目C。由于C可能比较大,仅要求输出C对X的余数。

Input

  第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述接下来M行,每行两个正整数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。N ≤100000, M ≤1000000;对于100%的数据, X ≤10^8

Output

  应包含两行,第一行包含一个整数K。第二行包含整数C Mod X.

Sample Input

6 6 20070603
1 2
2 1
1 3
2 4
5 6
6 4

Sample Output

3
3

  题目大意 一个有向图G(V, U)是半连通的,当且仅当任意点,并且存在一条路径,它上面的所有边属于U,并且从u到v或者从v到u。图G的导出子图G‘(V'. U'),满足.一个有向图G的半连通子图是一个导出子图且半连通,最大半连通子图是其中拥有最多点数的半连通子图。问最大的半连通子图的点数和数量。

  因为半连通子图一定是导出子图,所以两个半连通子图是否同构之和它们的定点集合有关。

  由于图上可能有环(强连通分量),所以考虑缩点。缩点后的图是个DAG,然后你可得到一个结论就是这个DAG上的一条路径就是原图的一个半连通子图,并且DAG上的路径和原图中的半连通子图一一对应。

  我们可以赋予每个点一个点权,代表它在原图中代表的点数。

  于是这个问题转换成在DAG上最长路及其计数。这个拓扑排序再加个小dp就可以水过了。

  另外注意拓扑排序的时判断重边。

Code

 /**
* bzoj
* Problem#1093
* Accepted
* Time: 1988ms
* Memory: 13740k
*/
#include <bits/stdc++.h>
using namespace std;
typedef bool boolean;
#define smin(a, b) a = min(a, b)
#define smax(a, b) b = max(a, b) int n, m;
int moder;
vector<int> *g; inline void init() {
scanf("%d%d%d", &n, &m, &moder);
g = new vector<int>[(n + )];
for(int i = , u, v; i <= m; i++) {
scanf("%d%d", &u, &v);
g[u].push_back(v);
}
} int cnt = ;
stack<int> s;
int* visitID;
int* exitID;
int* belong;
boolean *visited;
boolean *instack;
inline void init_tarjan() {
visitID = new int[(n + )];
exitID = new int[(n + )];
visited = new boolean[(n + )];
instack = new boolean[(n + )];
belong = new int[(n + )];
memset(visited, false, sizeof(boolean) * (n + ));
memset(instack, false, sizeof(boolean) * (n + ));
} void tarjan(int node) {
visitID[node] = exitID[node] = ++cnt;
visited[node] = instack[node] = true;
s.push(node); for(int i = ; i < (signed)g[node].size(); i++) {
int& e = g[node][i];
if(!visited[e]) {
tarjan(e);
smin(exitID[node], exitID[e]);
} else if(instack[e]) {
smin(exitID[node], visitID[e]);
}
} if(visitID[node] == exitID[node]) {
int e;
do {
e = s.top();
s.pop();
instack[e] = false;
belong[e] = node;
} while(e != node);
}
} vector<int> *ng;
int* dag;
int *val;
inline void rebuild() {
dag = new int[(n + )];
ng = new vector<int>[(n + )];
val = new int[(n + )];
memset(val, , sizeof(int) * (n + ));
memset(dag, , sizeof(int) * (n + )); for(int i = ; i <= n; i++)
for(int j = ; j < (signed)g[i].size(); j++) {
int& e = g[i][j];
if(belong[e] != belong[i])
ng[belong[i]].push_back(belong[e]), dag[belong[e]]++;
} for(int i = ; i <= n; i++)
val[belong[i]]++;
} queue<int> que;
int *dis;
int *counter;
inline void topu() {
dis = new int[(n + )];
counter = new int[(n + )];
memset(dis, , sizeof(int) * (n + ));
memset(visited, false, sizeof(boolean) * (n + )); for(int i = ; i <= n; i++)
if(belong[i] == i && !dag[i])
que.push(i), dis[i] = val[i], counter[i] = ; while(!que.empty()) {
int e = que.front();
que.pop();
for(int i = ; i < (signed)ng[e].size(); i++) {
int& eu = ng[e][i];
dag[eu]--;
if(!dag[eu])
que.push(eu);
if(visited[eu]) continue;
visited[eu] = true; if(dis[e] + val[eu] > dis[eu]) {
dis[eu] = dis[e] + val[eu];
counter[eu] = counter[e];
} else if(dis[e] + val[eu] == dis[eu])
counter[eu] = (counter[eu] + counter[e]) % moder;
}
for(int i = ; i < (signed)ng[e].size(); i++)
visited[ng[e][i]] = false;
}
} int maxdis = -, res = ;
inline void solve() {
for(int i = ; i <= n; i++) {
if(belong[i] != i) continue;
if(dis[i] > maxdis) {
maxdis = dis[i];
res = counter[i];
} else if(dis[i] == maxdis)
(res += counter[i]) %= moder;
}
printf("%d\n%d", maxdis, res);
} int main() {
init();
init_tarjan();
for(int i = ; i <= n; i++)
if(!visited[i])
tarjan(i);
rebuild();
topu();
solve();
return ;
}

bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划的更多相关文章

  1. 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...

  2. BZOJ 1093 最大半连通子图 题解

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2767  Solved: 1095[Submit][S ...

  3. [BZOJ]1093 最大半连通子图(ZJOI2007)

    挺有意思的一道图论. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:∀u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...

  4. BZOJ 1093 最大半连通子图

    缩点求最长链. #include<iostream> #include<cstdio> #include<cstring> #include<algorith ...

  5. BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )

    WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...

  6. [luogu2272 ZJOI2007] 最大半连通子图 (tarjan缩点 拓扑排序 dp)

    传送门 题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向 ...

  7. BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)

    题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...

  8. Luogu P2272 [ZJOI2007]最大半连通子图(Tarjan+dp)

    P2272 [ZJOI2007]最大半连通子图 题意 题目描述 一个有向图\(G=(V,E)\)称为半连通的\((Semi-Connected)\),如果满足:\(\forall u,v\in V\) ...

  9. [ZJOI2007]最大半连通子图 (Tarjan缩点,拓扑排序,DP)

    题目链接 Solution 大概是个裸题. 可以考虑到,如果原图是一个有向无环图,那么其最大半联通子图就是最长的一条路. 于是直接 \(Tarjan\) 缩完点之后跑拓扑序 DP就好了. 同时由于是拓 ...

随机推荐

  1. 判断数组对象里面的某个属性全部为true才执行下一步操作

    比如数据[ {name:'张三',isshow:'false'},name:'李四',isshow:'false'}, ] 这里是自己写的验证,没用elemten的 如果有2张票,需要刷2张身份证,则 ...

  2. Unittest + python

    Unittest简单应用 #_*_coding:utf8_*_ import unittest from selenium import webdriver import time class Tes ...

  3. 记录一则ORA-600 [13011]错误

    环境:Solaris 10 + Oracle 11.2.0.1 现象:alert告警日志定期出现ORA-600 [13011]错误 1.故障现象 2.初步分析 3.匹配MOS 4.定位解决 1.故障现 ...

  4. Hadoop书单词

    Hadoop fundamentals :Hadoop原理 英 [ˌfʌndə'mentlz] 美 [ˌfʌndə'mentlz] n.原理; 基本原则,基本法则( fundamental的名词复数) ...

  5. Koa中使用cookies

    错误重现:(使用ctx.cookies.set时报错) 这是因为koa的http的header字符集支持US-ASCII子集的字符集,故设置中文是'utf8'时就会报上面错误 解决方法有两种: 1.  ...

  6. selenium获取文本

    # 标题list_title = driver.find_elements_by_xpath('//*[@id="share-content"]/div/div[1]/ul/li/ ...

  7. AngularJs ng-change事件/指令(转)

    from:http://blog.csdn.net/u011127019/article/details/52564111 定义和用法 ng-change 指令用于告诉 AngularJS 在 HTM ...

  8. leetCode-linkedListCycle判断链表是否有环

    题目 Given a linked list, determine if it has a cycle in it. Follow up: Can you solve it without using ...

  9. vs2013未找到与约束匹配的导出

    解决方法: 1.关闭VS: 2.去C:/Users/<your users name>/AppData/Local/Microsoft/VisualStudio/12.0/Componen ...

  10. 输出列表为字符串,并在最后一个值前加上and 4.10.1

    逗号代码: def test4(lis): str1='' for i in range(len(lis)-1): str1+=(str(val[i])+', ') str1+=('and '+str ...