P1297 [国家集训队]单选错位

期望入门

我们考虑涂到第$i$道题时的情况

此时题$i$答案有$a[i]$种,我们可能涂$a[i+1]$种

分类讨论:

1.$a[i]>=a[i+1]$:

可能涂到答案的概率为$(a[i+1]/a[i])*(1/a[i+1])=1/a[i]$,贡献为1

没涂到的概率为$1-1/a[i]$,贡献为0

期望值:$1*(1/a[i])+0*(1-1/a[i])=1/a[i]$

2.$a[i]<a[i+1]$:

可能涂到答案的概率为$(a[i]/a[i+1])*(1/a[i])=1/a[i+1]$,贡献为1

没涂到的概率为$1-1/a[i+1]$,贡献为0

期望值:$1*(1/a[i+1])+0*(1-1/a[i+1])=1/a[i+1]$

总结一下,每次的期望值就是$1/max(a[i],a[i+1])$

最后把每次的期望值累加起来就好辣

#include<cstdio>
#define N 10000005
inline int Max(int a,int b){return a>b?a:b;}
int a[N],n,A,B,C; double f;
int main(){
scanf("%d%d%d%d%d",&n,&A,&B,&C,a+);
for (register int i=;i<=n;i++)
a[i] = ((long long)a[i-] * A + B) % ;
for (register int i=;i<=n;i++)
a[i] = a[i] % C + ;
for(register int i=;i<n;++i)
f+=/(double)Max(a[i],a[i+]);
f+=/(double)Max(a[n],a[]);
printf("%.3lf",f);
return ;
}

P1297 [国家集训队]单选错位(期望)的更多相关文章

  1. Luogu P1297 [国家集训队]单选错位

    P1297 [国家集训队]单选错位 题目背景 原 <网线切割>请前往P1577 题目描述 gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上 ...

  2. 洛谷P1297 [国家集训队]单选错位_数学期望

    考虑第 iii 位, 那么当前共有 a[i]a[i]a[i] 种选项,那么当前选项正确的情况就是下一个被误填的答案与当前答案相同.换句话说,当前答案一共有 a[i]a[i]a[i] 种可能,而下一个答 ...

  3. Luogu P1297 [国家集训队]单选错位 | 概率与期望

    题目链接 题解: 单独考虑每一道题目对答案的贡献. 设$g_i$表示gx在第$i$道题目的答案是否正确(1表示正确,0表示不正确),则$P(g_i=1)$表示gx在第$i$道题目的答案正确的概率. 我 ...

  4. P1297 [国家集训队]单选错位

    题目背景 原 <网线切割>请前往P1577 题目描述 gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个 ...

  5. BZOJ2134 luoguP1297 [国家集训队]单选错位

    单选错位 [问题描述] gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,a ...

  6. BZOJ.2134.[国家集训队]单选错位(概率 递推)

    题目链接 如题目中的公式,我们只要把做对每个题的概率加起来就可以了(乘个1就是期望). 做对第i道题的概率 \[P_i=\frac{1}{max(a_{i-1},a_i)}\] 原式是 \(P_i=\ ...

  7. BZOJ_2134_单选错位——期望DP

    BZOJ_2134_单选错位——期望DP 题意: 分析:设A为Ai ∈ [1,ai+1] 的概率,B为Ai = A(imodn+1)的概率显然P(A|B) = 1,那么根据贝叶斯定理P(B) = P( ...

  8. Bzoj 2134: [国家集训队2011]单选错位(期望)

    2134: 单选错位 Time Limit: 10 Sec Memory Limit: 259 MB Description Input n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A ...

  9. BZOJ 2134: 单选错位( 期望 )

    第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. ---------------------------------- ...

随机推荐

  1. JDBC 接口学习

    说明:文章所有内容皆选自实验楼教程[JDBC 入门教程],想要学习更多JDBC,可以点击教程进行学习~ JDBC 简介 JDBC 的全称是 Java Database Connectivity,叫做 ...

  2. 海量数据找相同数,高配词,不重复的数,判断一个数是否存在,查询串,不同电话号码的个数,中位数,按照query频度排序,topk

    这类题目,首先需要确定可用内存的大小,然后确定数据的大小,由这两个参数就可以确定hash函数应该怎么设置才能保证每个文件的大小都不超过内存的大小,从而可以保证每个小的文件都能被一次性加载到内存中. 1 ...

  3. JAVA编程思想学习笔记7-chap19-21-斗之气7段

    1.枚举 2.内置三种注解 @Override @Deprecated @SuppressWarnings 3.元注解:用于注解其它注解 4.注解处理器:通过反射 5.创建线程的两种方式 实现Runn ...

  4. 实验源码,DES,AES,RSA,椭圆曲线

    https://pan.baidu.com/s/1CPA-bnLmcJR_AFsNImhUjQ

  5. Sublime text3 经常出现 “ There are no packages avaliable for installation” 解决方法

    对应这个问题,一开始在度娘上找到很多答案,包括将json文件放在本地然后通过 package setting 更改的,发现其实不好使,原因未知. 后来测试了在hosts文件添加sublime text ...

  6. JSP—简介

    BS/CS的区别? CS模式: client:客户端:存放操作界面的图片样式本地数据和缓存等 server:服务端:保存核心数据 请求响应模式:收到请求后,服务器只需要返回核心的数据 优缺点:需要安装 ...

  7. 3.用Thead子类及Runnable接口类实现车站购票的一个场景(static关键字)

    如上图所示,我们这里模拟一下去车站买票的情形:这里有3个柜台同时售票,总共是1000张票,这三个柜台同时买票,但是只能一个柜台卖同一张票,也就是说1号票卖了之后我们就只能买2号票,2号票卖了之后我们只 ...

  8. Aggregated Counting(找规律 + 预处理)

    Aggregated Counting 转 : https://blog.csdn.net/cq_phqg/article/details/48417111 题解: 可以令n=1+2+2+3+3+.. ...

  9. OS Tools-GO富集分析工具的使用与解读详细教程

    我们的云平台上的GO富集分析工具,需要输入的文件表格和参数很简单,但很多同学都不明白其中的原理与结果解读,这个帖子就跟大家详细解释~ 一.GO富集介绍:       Gene Ontology(简称G ...

  10. 解读NoSQL数据库的四大家族

    在目前的企业IT架构中,系统管理员以及DBA都会考虑使用NoSQL数据库来解决RDBMS所不能解决的问题,特别是互联网行业.传统的关系型数据库主要以表(table)的形式来存储数据,而无法应对非结构化 ...