POJ - 1426 Find The Multiple(搜索+数论)
转载自:優YoU http://user.qzone.qq.com/289065406/blog/1303946967
以下内容属于以上这位dalao
http://poj.org/problem?id=1426
题意
给出一个整数n,(1 <= n <= 200)。求出任意一个它的倍数m,要求m必须只由十进制的'0'或'1'组成。
分析
首先暴力枚举肯定是不可能的 1000ms 想不超时都难,而且枚举还要解决大数问题。。
要不是人家把这题放到搜索,怎么也想不到用BFS。。。
解题方法: BFS+同余模定理
不说废话。
首先说说朴素的不剪枝搜索方法:
我以n=6为例
首先十进制数,开头第一个数字(最高位)一定不能为0,即最高位必为1
设6的 ”01十进制倍数” 为k,那么必有k%6 = 0
现在就是要用BFS求k值
1、先搜索k的最高位,最高位必为1,则此时k=1,但1%6 =1 != 0
因此k=1不是所求,存储余数 1
2、搜索下一位,下一位可能为0,即 k*10+0,此时k=10,那么k%6=4
可能为1,即 k*10+1,此时k=11,那么k%6=5
由于余数均不为0,即k=10与k=11均不是所求
3、继续搜索第三位,此时有四种可能了:
对于k=10,下一位可能为0,即 k*10+0,此时k=100,那么k%6=4
下一位可能为1,即 k*10+1,此时k=101,那么k%6=5
对于k=11,下一位可能为0,即 k*10+0,此时k=110,那么k%6=2
下一位可能为1,即 k*10+1,此时k=111,那么k%6=3
由于余数均不为0,即k=100,k=101,k=110,k=111均不是所求
4、继续搜索第四位,此时有八种可能了:
对于k=100,下一位可能为0,即 k*10+0,此时k=1000,那么k%6=4
下一位可能为1,即 k*10+1,此时k=1001,那么k%6=5
对于k=101,下一位可能为0,即 k*10+0,此时k=1010,那么k%6=2
下一位可能为1,即 k*10+1,此时k=1011,那么k%6=3
对于k=110,下一位可能为0,即 k*10+0,此时k=1100,那么k%6=2
下一位可能为1,即 k*10+1,此时k=1101,那么k%6=3
对于k=111,下一位可能为0,即 k*10+0,此时k=1110,那么k%6=0
下一位可能为1,即 k*10+1,此时k=1111,那么k%6=1
我们发现k=1110时,k%6=0,即1110就是所求的倍数
从上面的演绎不难发现,用BFS是搜索 当前位数字 (除最高位固定为1),因为每一位都只有0或1两种选择,换而言之是一个双入口BFS
本题难点在于搜索之后的处理:对余数的处理,对大数的处理,余数与所求倍数间的关系
接下来说说处理大数问题和剪枝的方法:
首先我们简单回顾一下 朴素搜索 法:
n=6
1%6=1 (k=1)
{
(1*10+0)%6=4 (k=10)
{
(10*10+0)%6=4 (k=100)
{
(100*10+0)%6=4 (k=1000)
(100*10+1)%6=5 (k=1001)
}
(10*10+1)%6=5 (k=101)
{
(101*10+0)%6=2 (k=1010)
(101*10+1)%6=3 (k=1011)
}
}
(1*10+1)%6=5 (k=11)
{
(11*10+0)%6=2 (k=110)
{
(110*10+0)%6=2 (k=1100)
(110*10+1)%6=3 (k=1101)
}
(11*10+1)%6=3 (k=111)
{
(111*10+0)%6=0 (k=1110) 有解
(111*10+1)%6=1 (k=1111) 由于前面有解,这个余数不存储
}
}
}
从上面可以看出余数的存数顺序(逐层存储):
用数组mod[]存储余数,其中mod[0]不使用,由mod[1]开始
那么mod中的余数依次为: 1 4 5 4 5 2 3 4 5 2 3 2 3 0 共14个
即说明我们得到 余数0 之前,做了14步*10的操作,那么当n值足够大的时候,是很容易出现k为大数的情况(事实上我做过统计,200以内的n,有18个n对应的k值为大数
那么我们再用int去存储k就显得不怎么明智了。
为了处理所有情况,我们自然会想到 是不是应该要用int[]去存储k的每一位?
而又由于k是一个01序列,那能不能把 *10得到k每一位的问题 转化为模2的操作得到k的每一位(0或1) 呢?
答案是可以的
首先我们利用 同余模定理 对得到余数的方式进行一个优化
(a*b)%n = (a%n *b%n)%n
(a+b)%n = (a%n +b%n)%n
随便抽取上面一条式子为例
前一步 (11*10+0)%6=2 即k=110 , k%6=2
当前步 (110*10+0)%6=2
由同余模定理 (110*10+0)%6 = ((110*10)%6+0%6 )%6 = ((110%6 * 10%6)%6 +0)%6
不难发现下划线部分110%6等于 (11*10+0)%6 = 2
所以当前步(110*10+0)%6可以转变为 (2*10+0)%6=2
很显然地,这种处理把k=110 等价于 k=2
即用 前一步操作得到的余数 代替 当前步的k值
而n在200的范围内, 余数值不可能超过3位数, 这就解决了 大数的问题
通过这种处理手法,我们只需在BFS时顺手存储一个 余数数组mod[] ,就能通过mod[i/2]得到mod[i] ,直到mod[i]==0 时结束,大大减少了运算时间
前面已经提到,n=6时,求余操作进行了14次,对应地,BFS时*10的操作也进行了14次。
令i=14,通过观察发现,i%2恰好就是 6 的倍数的最低位数字
i/2 再令 i%2 ,恰好就是 6 的倍数的 次低位数字。。。
循环这个操作,直到i=0,就能得到 6的 01倍数(一个01队列),倒序输出就是所求
这样就完成了 *10操作到 %2操作的过渡
由于n值有限,只是1到200的整数,因此本题也可以用打表做,通过上面的方法得到结果后,就把1~200的倍数打印出来,重新建立一个程序,直接打表就可以了。
不过打表比上面介绍的方法快不了多少
//Memory Time
//2236K 32MS #include<iostream>
using namespace std; int mod[]; //保存每次mod n的余数
//由于198的余数序列是最长的
//经过反复二分验证,436905是能存储198余数序列的最少空间
//但POJ肯定又越界测试了...524286是AC的最低下限,不然铁定RE int main(int i)
{
int n;
while(cin>>n)
{
if(!n)
break; mod[]=%n; //初始化,n倍数的最高位必是1 for(i=;mod[i-]!=;i++) //利用同余模定理,从前一步的余数mod[i/2]得到下一步的余数mod[i]
mod[i]=(mod[i/]*+i%)%n;
//mod[i/2]*10+i%2模拟了BFS的双入口搜索
//当i为偶数时,+0,即取当前位数字为0 。为奇数时,则+1,即取当前位数字为1 i--;
int pm=;
while(i)
{
mod[pm++]=i%; //把*10操作转化为%2操作,逆向求倍数的每一位数字
i/=;
}
while(pm)
cout<<mod[--pm]; //倒序输出
cout<<endl;
}
return ;
}
POJ - 1426 Find The Multiple(搜索+数论)的更多相关文章
- POJ 1426 Find The Multiple(数论——中国同余定理)
题目链接: http://poj.org/problem?id=1426 Description Given a positive integer n, write a program to find ...
- poj 1426 Find The Multiple 搜索进阶-暑假集训
E - Find The Multiple Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I6 ...
- POJ 1426 Find The Multiple --- BFS || DFS
POJ 1426 Find The Multiple 题意:给定一个整数n,求n的一个倍数,要求这个倍数只含0和1 参考博客:点我 解法一:普通的BFS(用G++能过但C++会超时) 从小到大搜索直至 ...
- 广搜+打表 POJ 1426 Find The Multiple
POJ 1426 Find The Multiple Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25734 Ac ...
- POJ 1426 Find The Multiple(寻找倍数)
POJ 1426 Find The Multiple(寻找倍数) Time Limit: 1000MS Memory Limit: 65536K Description - 题目描述 Given ...
- POJ.1426 Find The Multiple (BFS)
POJ.1426 Find The Multiple (BFS) 题意分析 给出一个数字n,求出一个由01组成的十进制数,并且是n的倍数. 思路就是从1开始,枚举下一位,因为下一位只能是0或1,故这个 ...
- DFS/BFS(同余模) POJ 1426 Find The Multiple
题目传送门 /* 题意:找出一个0和1组成的数字能整除n DFS:200的范围内不会爆long long,DFS水过~ */ /************************************ ...
- POJ 1426 Find The Multiple (DFS / BFS)
题目链接:id=1426">Find The Multiple 解析:直接从前往后搜.设当前数为k用long long保存,则下一个数不是k*10就是k*10+1 AC代码: /* D ...
- [深度优先搜索] POJ 1426 Find The Multiple
Find The Multiple Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28550 Accepted: 118 ...
随机推荐
- 转载:必须收藏!50个最流行的免费Kubernetes工具集
必须收藏!50个最流行的免费Kubernetes工具集 http://cloud.51cto.com/art/201806/576406.htm 在短短的两年时间里,Kubernetes在容器编排的竞 ...
- [转帖] infiniband的协议速度
- 开启打印服务Print Spooler
windows系统需要开启Print Spooler才能进行打印,如果不开启,可能造成很多现象和原因,比如windows打印机队列的打印机全部消失,用Lodop打印的时候提示"Printer ...
- servlet生成验证码代码
package forward; import java.awt.Color;import java.awt.Font;import java.awt.Graphics;import java.awt ...
- Minimum Cost POJ - 2516(模板题。。没啥好说的。。)
题意: 从发货地到商家 送货 求送货花费的最小费用... 有m个发货地,,,n个商家,,每个商家所需要的物品和物品的个数都不一样,,,每个发货地有的物品和物品的个数也不一样,,, 从不同的发货地到不同 ...
- MT【59】一道迭代函数作图
[Read a good book, that is conversation with many a noble man.]---勒内·笛卡尔(1596-1650) 解答: 评:也可以把f(f(x) ...
- centos Install Mrtg
安装支持软件包yum –y install gcc perl gd libpng zlib net-snmp mrtg配置snmpd编辑/etc/snmp/snmpd.conf文件备份snmpd.co ...
- Zabbix 添加对交换机端口流量超出阈值的监控
点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 22 Zabbix 添加对交换机端口流量超出阈值的监控 本文主要讲解利用zabbix 添加对交换机 ...
- Java NIO -- 缓冲区(Buffer)的数据存取
缓冲区(Buffer): 一个用于特定基本数据类型的容器.由 java.nio 包定义的,所有缓冲区都是 Buffer 抽象类的子类.Java NIO 中的 Buffer 主要用于与 NIO 通道进行 ...
- C# try catch语句&获取随机数的方法
try catch语句: try{ //无论如何都会走,必须写: } catch(Exception a){ //Exception报异常,需要定义,需要写输出语句: //如果上面执行失败走,必须写: ...