多分类-- ROC曲线
本文主要介绍一下多分类下的ROC曲线绘制和AUC计算,并以鸢尾花数据为例,简单用python进行一下说明。如果对ROC和AUC二分类下的概念不是很了解,可以先参考下这篇文章:http://blog.csdn.net/ye1215172385/article/details/79448575
由于ROC曲线是针对二分类的情况,对于多分类问题,ROC曲线的获取主要有两种方法:
假设测试样本个数为m,类别个数为n(假设类别标签分别为:0,2,...,n-1)。在训练完成后,计算出每个测试样本的在各类别下的概率或置信度,得到一个[m, n]形状的矩阵P,每一行表示一个测试样本在各类别下概率值(按类别标签排序)。相应地,将每个测试样本的标签转换为类似二进制的形式,每个位置用来标记是否属于对应的类别(也按标签排序,这样才和前面对应),由此也可以获得一个[m, n]的标签矩阵L。
比如n等于3,标签应转换为:
方法1:每种类别下,都可以得到m个测试样本为该类别的概率(矩阵P中的列)。所以,根据概率矩阵P和标签矩阵L中对应的每一列,可以计算出各个阈值下的假正例率(FPR)和真正例率(TPR),从而绘制出一条ROC曲线。这样总共可以绘制出n条ROC曲线。最后对n条ROC曲线取平均,即可得到最终的ROC曲线。
方法2:首先,对于一个测试样本:1)标签只由0和1组成,1的位置表明了它的类别(可对应二分类问题中的‘’正’’),0就表示其他类别(‘’负‘’);2)要是分类器对该测试样本分类正确,则该样本标签中1对应的位置在概率矩阵P中的值是大于0对应的位置的概率值的。基于这两点,将标签矩阵L和概率矩阵P分别按行展开,转置后形成两列,这就得到了一个二分类的结果。所以,此方法经过计算后可以直接得到最终的ROC曲线。
上面的两个方法得到的ROC曲线是不同的,当然曲线下的面积AUC也是不一样的。 在python中,方法1和方法2分别对应sklearn.metrics.roc_auc_score函数中参数average值为'macro'和'micro'的情况。
下面以方法2为例,直接上代码,概率矩阵P和标签矩阵L分别对应代码中的y_score和y_one_hot:
#!/usr/bin/python
# -*- coding:utf-8 -*- import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegressionCV
from sklearn import metrics
from sklearn.preprocessing import label_binarize if __name__ == '__main__':
np.random.seed(0)
data = pd.read_csv('iris.data', header = None) #读取数据
iris_types = data[4].unique()
n_class = iris_types.size
x = data.iloc[:, :2] #只取前面两个特征
y = pd.Categorical(data[4]).codes #将标签转换0,1,...
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size = 0.6, random_state = 0)
y_one_hot = label_binarize(y_test, np.arange(n_class)) #装换成类似二进制的编码
alpha = np.logspace(-2, 2, 20) #设置超参数范围
model = LogisticRegressionCV(Cs = alpha, cv = 3, penalty = 'l2') #使用L2正则化
model.fit(x_train, y_train)
print '超参数:', model.C_
# 计算属于各个类别的概率,返回值的shape = [n_samples, n_classes]
y_score = model.predict_proba(x_test)
# 1、调用函数计算micro类型的AUC
print '调用函数auc:', metrics.roc_auc_score(y_one_hot, y_score, average='micro')
# 2、手动计算micro类型的AUC
#首先将矩阵y_one_hot和y_score展开,然后计算假正例率FPR和真正例率TPR
fpr, tpr, thresholds = metrics.roc_curve(y_one_hot.ravel(),y_score.ravel())
auc = metrics.auc(fpr, tpr)
print '手动计算auc:', auc
#绘图
mpl.rcParams['font.sans-serif'] = u'SimHei'
mpl.rcParams['axes.unicode_minus'] = False
#FPR就是横坐标,TPR就是纵坐标
plt.plot(fpr, tpr, c = 'r', lw = 2, alpha = 0.7, label = u'AUC=%.3f' % auc)
plt.plot((0, 1), (0, 1), c = '#808080', lw = 1, ls = '--', alpha = 0.7)
plt.xlim((-0.01, 1.02))
plt.ylim((-0.01, 1.02))
plt.xticks(np.arange(0, 1.1, 0.1))
plt.yticks(np.arange(0, 1.1, 0.1))
plt.xlabel('False Positive Rate', fontsize=13)
plt.ylabel('True Positive Rate', fontsize=13)
plt.grid(b=True, ls=':')
plt.legend(loc='lower right', fancybox=True, framealpha=0.8, fontsize=12)
plt.title(u'鸢尾花数据Logistic分类后的ROC和AUC', fontsize=17)
plt.show()
实验输出结果:
可以从上图看出,两者计算结果一致!
实验绘图结果:
这里是micro average ROC:
https://blog.csdn.net/YE1215172385/article/details/79443552
macro average ROC 可以参考:
https://blog.csdn.net/xyz1584172808/article/details/81839230
多分类-- ROC曲线的更多相关文章
- 机器学习:分类算法性能指标之ROC曲线
在介绍ROC曲线之前,先说说混淆矩阵及两个公式,因为这是ROC曲线计算的基础. 1.混淆矩阵的例子(是否点击广告): 说明: TP:预测的结果跟实际结果一致,都点击了广告. FP:预测结果点击了,但是 ...
- 【sklearn】性能度量指标之ROC曲线(二分类)
原创博文,转载请注明出处! 1.ROC曲线介绍 ROC曲线适用场景 二分类任务中,positive和negtive同样重要时,适合用ROC曲线评价 ROC曲线的意义 TPR的增长是以FPR的增长为代价 ...
- 多分类下的ROC曲线和AUC
本文主要介绍一下多分类下的ROC曲线绘制和AUC计算,并以鸢尾花数据为例,简单用python进行一下说明.如果对ROC和AUC二分类下的概念不是很了解,可以先参考下这篇文章:http://blog.c ...
- ROC曲线是通过样本点分类概率画出的 例如某一个sample预测为1概率为0.6 预测为0概率0.4这样画出来,此外如果曲线不是特别平滑的话,那么很可能存在过拟合的情况
ROC和AUC介绍以及如何计算AUC from:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ ROC(Receiver Operat ...
- 机器学习:评价分类结果(ROC 曲线)
一.基础理解 1)定义 ROC(Receiver Operation Characteristic Curve) 定义:描述 TPR 和 FPR 之间的关系: 功能:应用于比较两个模型的优劣: 模型不 ...
- scikit-learn机器学习(二)逻辑回归进行二分类(垃圾邮件分类),二分类性能指标,画ROC曲线,计算acc,recall,presicion,f1
数据来自UCI机器学习仓库中的垃圾信息数据集 数据可从http://archive.ics.uci.edu/ml/datasets/sms+spam+collection下载 转成csv载入数据 im ...
- 【分类模型评判指标 二】ROC曲线与AUC面积
转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80499031 略有改动,仅供个人学习使用 简介 ROC曲线与AUC面积均是用来 ...
- 分类问题(四)ROC曲线
ROC曲线 ROC曲线是二元分类器中常用的工具,它的全称是 Receiver Operating Characteristic,接收者操作特征曲线.它与precision/recall 曲线特别相似, ...
- [机器学习]-分类问题常用评价指标、混淆矩阵及ROC曲线绘制方法
分类问题 分类问题是人工智能领域中最常见的一类问题之一,掌握合适的评价指标,对模型进行恰当的评价,是至关重要的. 同样地,分割问题是像素级别的分类,除了mAcc.mIoU之外,也可以采用分类问题的一些 ...
随机推荐
- C# Winform OpenFileDialog 控件
OpenFileDialog控件又称打开文件对话框,主要用来弹出Windows中标准的[打开文件]对话框. OpenFileDialog控件的常用属性如下. (1)Title属性:用来获取或设置对话框 ...
- 078 Hbase中rowkey设计原则
1.热点问题 在某一时间段,有大量的数据同时对一个region进行操作 2.原因 对rowkey的设计不合理 对rowkey的划分不合理 3.解决方式 rowkey是hbase的读写唯一标识 最大长度 ...
- 今天刚学到truncate和delete的区别,做个总结吧
truncate table : 删除内容,释放空间(表中数据会被删除,但不会进入oracle回收站,直接删除),不删除定义 delete table : 删除内容,不释放空间(表中数据虽被删除,但是 ...
- 程序员之路:python3+PyQt5+pycharm桌面GUI开发(转)
程序员之路:python3+PyQt5+pycharm桌面GUI开发 http://blog.sina.com.cn/s/blog_989218ad0102wz1k.html 先看效果: 图 1 没错 ...
- BZOJ.2118.墨墨的等式(思路 最短路Dijkstra 按余数分类)
题目链接 题意可以看做,用\(a_1,a_2,...,a_n\),能组成多少个\([L,R]\)中的数. (40分就是个完全背包) 首先如果\(k*a_i+x\)可以组成,那么\((k+1)*a_i+ ...
- BZOJ.3064.CPU监控(线段树 历史最值)
题目链接 \(Description\) 有一个长为n的序列Ai,要求支持查询[l,r]的最值.历史最值,区间加/重设 \(Solution\) 线段树,每个点再维护一个历史(从0到现在)最大值.历史 ...
- Putty 工具使用
如何使用Putty远程(SSH)管理Linux VPS Putty是一个免费的.Windows 32平台下的telnet.rlogin和ssh客户端,但是功能丝毫不逊色于商业的telnet类工具.用它 ...
- Mysql 登录及用户切换、用户权限查询
启动mysql: 方法一:net start mysql(或者是其他服务名) 方法二:在windows下启动MySQL服务 MySql安装目录:"d:\MySql\" 进入命令行输 ...
- Docker 容器生命周期管理命令
docker run 命令 -d: 后台运行容器,并返回容器ID: -i: 以交互模式运行容器,通常与 -t 同时使用: -t: 为容器重新分配一个伪输入终端,通常与 -i 同时使用: --name= ...
- Cocos Creator的小点
声明的时候,变量如此:但用的时候就变成了border,找了很久的问题,一直没找到啊,后来就发现命名的时候和内置的一定不要太相似否则后悔的只能是自己: cc.Class({ extends: cc.Co ...