TensorFlow 中维护的集合列表

在一个计算图中,可以通过集合(collection)来管理不同类别的资源。比如通过 tf.add_to_collection 函数可以将资源加入一个或多个集合中,然后通过 tf.get_collection 获取一个集合里面的所有资源(如张量,变量,或者运行TensorFlow程序所需的队列资源等等)。比如,通过 tf.add_n(tf.get_collection('losses')) 获得总损失。

集合名称 集合内容 使用场景
tf.GraphKeys.VARIABLES 所有变量 持久化 TensorFlow 模型
tf.GraphKeys.TRAINABLE_VARIABLES 可学习的变量(一般指神经网络中的参数) 模型训练、生成模型可视化内容
tf.GraphKeys.SUMMARIES 日志生成相关的张量 TensorFlow 计算可视化
tf.GraphKeys.QUEUE_RUNNERS 处理输入的 QueueRunner 输入处理
tf.GraphKeys.MOVING_AVERAGE_VARIABLES 所有计算了滑动平均值的变量 计算变量的滑动平均值
  1. TensorFlow中的所有变量都会被自动加入tf.GraphKeys.VARIABLES集合中,通过 tf.global_variables()函数可以拿到当前计算图上的所有变量。拿到计算图上的所有变量有助于持久化整个计算图的运行状态。
  2. 当构建机器学习模型时,比如神经网络,可以通过变量声明函数中的trainable参数来区分需要优化的参数(比如神经网络的参数)和其他参数(比如迭代的轮数,即超参数),若trainable = True,则此变量会被加入tf.GraphKeys.TRAINABLE_VARIABLES集合。然后通过 tf.trainable_variables函数便可得到所有需要优化的参数。TensorFlow中提供的优化算法会将tf.GraphKeys.TRAINABLE_VARIABLES集合中的变量作为 默认的优化对象。

示例

tf.get_collection 的第一个参数是集合的名字,第二个参数是要加入集合的内容:

def get_weight(shape, lambda1):
# 获取一层神经网络边上的权重
var = tf.Variable(tf.random_normal(shape), dtype=tf.float32)
# 将这个权重的 L2 正则化损失加入名称为 'losses' 的集合中
tf.add_to_collection('losses',
tf.contrib.layers.l2_regularizer(lambda1)(var))
return var

变量初始化函数

神经网络中的参数是通过 TensorFlow 中的变量来组织、保存和使用的。TensorFlow 中提供了两种变量机制:tf.Variabletf.get_variable.

  1. 变量的类型是不可以改变的。
  2. 变量的维度一般是不能改变的,除非设置参数validate_shape = False(很少去改变它)

随机数初始化函数

函数名 随机数分布 主要参数
tf.random_normal 正态分布 平均值、标准差、取值类型
tf.truncated_normal 满足正态分布的随机值,但若随机值偏离平均值超过2个标准差,则这个数会被重新随机 平均值、标准差、取值类型
tf.random_uniform 平均分布 最大、最小值、取值类型
tf.random_gamma Gramma分布 形状参数alpha、尺度参数beta、取值类型

常量初始化函数

函数名 功能 示例
tf.zeros 产生全0的数组 tf.zeros([2, 3],tf.int32)
tf.ones 产生全1的数组 tf.ones([2, 3],tf.int32)
tf.fill 产生一个全部为给定数组的数组 tf.fill([2,3], 9)
tf.constant 产生一个给定值的常量 tf.constant([2,3,4])

tf.get_variable 变量初始化函数

初始化函数 功能 主要参数
tf.constant_initializer 将变量初始化为给定常数 常数的取值
tf.random_normal_initializer 将变量初始化为满足正态分布的随机值 正态分布的均值和标准差
tf.truncated_normal_initializer 将变量初始化为满足正态分布的随机值,但若随机值偏离平均值超过2个标准差,则这个数会被重新随机 正态分布的均值和标准差
tf.random_uniform_initializer 将变量初始化为满足平均分布的随机值 最大、最小值
tf.uniform_unit_scaling_initializer 将变量初始化为满足平均分布但不影响输出数量级的随机值 factor(产生随机值时乘以的系数)
tf.zeros_initializer 将变量初始化为全0 变量维度
tf.ones_initializer 将变量初始化为全1 变量维度

tf.get_variable 用于创建变量时,它和 tf.Variable 的功能是基本等价的。而 tf.get_variabletf.Variable 的最大的区别在于指定变量名称的参数。

  • 对于 tf.Variable 函数,变量名称是一个可选参数,通过 name='v' 的形式给出;
  • 对于 tf.get_variable 函数,变量名称是一个必填的参数。tf.get_variable 函数会根据这个名字去创建或者获取变量。

详细内容见 变量管理


其他

tf.clip_by_value 函数将张量限定在一定的范围内:

import tensorflow as tf
sess = tf.InteractiveSession() v = tf.constant([[1., 2., 3.], [4., 5., 6.]])
tf.clip_by_value(v, 2.5, 4.5).eval() # 小于2.5的数值设为2.5,大于4.5的数值设为4.5
array([[2.5, 2.5, 3. ],
[4. , 4.5, 4.5]], dtype=float32)

tf.log 对张量所有元素进行对数运算

tf.log(v).eval()
array([[0.       , 0.6931472, 1.0986123],
[1.3862944, 1.609438 , 1.7917595]], dtype=float32)

tf.greater,比较这两个张量中的每一个元素,并返回比较结果

  • 输入是两个张量
  • 当输入维度不一致时会进行广播(broadcasting)
v1 = tf.constant([1., 2., 3., 4.])
v2 = tf.constant([4., 3., 2., 1.])
f = tf.greater(v1, v2)
f.eval()
array([False, False,  True,  True])

tf.where 比较函数

函数有三个参数:

  • 第一个选择条件根据,当选择条件为True时,会选择第二个参数中的值,否则使用第三个参数中的值:
tf.where(f, v1, v2).eval()
array([4., 3., 3., 4.], dtype=float32)

指数衰减学习率

tf.train.exponential_decay 函数指数衰减学习率。

tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)

  • learning_rate :事先设定的初始学习率
  • decay_steps: 衰减速度,staircase = True时代表了完整的使用一遍训练数据所需要的迭代轮数(= 总训练样本数/每个batch中的训练样本数)
  • decay_rate: 衰减系数
  • staircase: 默认为False,此时学习率随迭代轮数的变化是连续的(指数函数);为 True 时,global_step/decay_steps 会转化为整数,此时学习率便是阶梯函数

示例:

TRAINING_STEPS = 100
global_step = tf.Variable(0)
LEARNING_RATE = tf.train.exponential_decay(
0.1, global_step, 1, 0.96, staircase=True) x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x")
y = tf.square(x)
train_op = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(
y, global_step=global_step) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(TRAINING_STEPS):
sess.run(train_op)
if i % 10 == 0:
LEARNING_RATE_value = sess.run(LEARNING_RATE)
x_value = sess.run(x)
print("After %s iteration(s): x%s is %f, learning rate is %f." %
(i + 1, i + 1, x_value, LEARNING_RATE_value))
After 1 iteration(s): x1 is 4.000000, learning rate is 0.096000.
After 11 iteration(s): x11 is 0.690561, learning rate is 0.063824.
After 21 iteration(s): x21 is 0.222583, learning rate is 0.042432.
After 31 iteration(s): x31 is 0.106405, learning rate is 0.028210.
After 41 iteration(s): x41 is 0.065548, learning rate is 0.018755.
After 51 iteration(s): x51 is 0.047625, learning rate is 0.012469.
After 61 iteration(s): x61 is 0.038558, learning rate is 0.008290.
After 71 iteration(s): x71 is 0.033523, learning rate is 0.005511.
After 81 iteration(s): x81 is 0.030553, learning rate is 0.003664.
After 91 iteration(s): x91 is 0.028727, learning rate is 0.002436.

正则化

w = tf.constant([[1., -2.], [-3, 4]])
with tf.Session() as sess:
print(sess.run(tf.contrib.layers.l1_regularizer(.5)(w))) # 0.5 为正则化权重
print(sess.run(tf.contrib.layers.l2_regularizer(.5)(w)))
5.0
7.5

滑动平均模型

滑动平均模型会将每一轮迭代得到的模型综合起来,从而使得最终得到的模型在测试数据上更加健壮(robust)。

tf.train.ExponentialMovingAverage 需要提供一个衰减率(decay)来控制模型更新的速度。

ExponentialMovingAverage 对每一个变量会维护一个影子变量(shadow variable),这个影子变量的初始值就是相应变量的初始值,而每次运行变量更新时,影子变量的值会更新为:

\[\text{shadow_variable} = \text{decay} \times \text{shadow_variable} + (1 - \text{decay}) \times \text{variable}
\]

  • shadow_variable 为影子变量,
  • variable 为待更新变量
  • decay 为衰减率,它越大模型越趋于稳定,在实际应用中decay一般会设置为接近 1 的数。

还可以使用 num_updates参数来动态设置decay的大小:

\[\text{decay} = \min\begin{Bmatrix} \text{decay}, \frac{1 + \text{num_updates}}{10 + \text{num_updates}}\end{Bmatrix}
\]

定义变量及滑动平均类

import tensorflow as tf
# 定义一个变量用来计算滑动平均,且其初始值为0,类型必须为实数
v1 = tf.Variable(0, dtype=tf.float32)
# step变量模拟神经网络中迭代的轮数,可用于动态控制衰减率
step = tf.Variable(0, trainable=False) # 定义一个滑动平均的类(class)。初始化时给定了衰减率为0.99和控制衰减率的变量step
ema = tf.train.ExponentialMovingAverage(0.99, step)
# 定义一个更新变量滑动平均的操作。这里需要给定一个列表,每次执行这个操作时,此列表中的变量都会被更新。
maintain_averages_op = ema.apply([v1])

查看不同迭代中变量取值的变化。

with tf.Session() as sess:

    # 初始化
init_op = tf.global_variables_initializer()
sess.run(init_op)
# 通过ema.average(v1)获取滑动平均后的变量取值。在初始化之后变量v1的值和v1 的滑动平均均为0
print(sess.run([v1, ema.average(v1)])) # 更新变量v1的取值
sess.run(tf.assign(v1, 5))
sess.run(maintain_averages_op)
print(sess.run([v1, ema.average(v1)])) # 更新step和v1的取值
sess.run(tf.assign(step, 10000))
sess.run(tf.assign(v1, 10))
sess.run(maintain_averages_op)
print(sess.run([v1, ema.average(v1)])) # 更新一次v1的滑动平均值
sess.run(maintain_averages_op)
print(sess.run([v1, ema.average(v1)]))
[0.0, 0.0]
[5.0, 4.5]
[10.0, 4.555]
[10.0, 4.60945]

  • 裁剪多余维度: tf.squeeze

TensorFlow 常用的函数的更多相关文章

  1. TensorFlow常用的函数

    TensorFlow中维护的集合列表 在一个计算图中,可以通过集合(collection)来管理不同类别的资源.比如通过 tf.add_to_collection 函数可以将资源加入一个 或多个集合中 ...

  2. Tensorflow常用的函数:tf.cast

    1.tf.cast(x,dtype,name) 此函数的目的是为了将x数据,准换为dtype所表示的类型,例如tf.float32,tf.bool,tf.uint8等 example:  import ...

  3. 深度学习TensorFlow常用函数

    tensorflow常用函数 TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, Tensor ...

  4. TensorFlow常用Python扩展包

    TensorFlow常用Python扩展包 TensorFlow 能够实现大部分神经网络的功能.但是,这还是不够的.对于预处理任务.序列化甚至绘图任务,还需要更多的 Python 包. 下面列出了一些 ...

  5. oracle(sql)基础篇系列(一)——基础select语句、常用sql函数、组函数、分组函数

        花点时间整理下sql基础,温故而知新.文章的demo来自oracle自带的dept,emp,salgrade三张表.解锁scott用户,使用scott用户登录就可以看到自带的表. #使用ora ...

  6. php常用字符串函数小结

    php内置了98个字符串函数(除了基于正则表达式的函数,正则表达式在此不在讨论范围),能够处理字符串中能遇到的每一个方面内容,本文对常用字符串函数进行简单的小结,主要包含以下8部分:1.确定字符串长度 ...

  7. php常用数组函数回顾一

    数组对于程序开发来说是一个必不可少的工具,我根据网上的常用数组函数,结合个人的使用情况,进行数组系列的总结复习.里面当然不只是数组的基本用法,还有相似函数的不同用法的简单实例,力求用最简单的实例,记住 ...

  8. byte数据的常用操作函数[转发]

    /// <summary> /// 本类提供了对byte数据的常用操作函数 /// </summary> public class ByteUtil { ','A','B',' ...

  9. WordPress主题模板层次和常用模板函数

    首页: home.php index.php 文章页: single-{post_type}.php – 如果文章类型是videos(即视频),WordPress就会去查找single-videos. ...

随机推荐

  1. jquery 学习(四) - 标签 添加/删除/修改

    HTML代码 <div class="a1"> <div> <span id="a2">aaa</span> & ...

  2. groovy与java中的多方法

    最近在学习groovy的时候从书里看到这么一个有趣的例子,刚开始我也猜错了: 最后测试答案是: son ----show 刚开始没理解,以为是num---show,但是后来看书上说是: test01接 ...

  3. Check Box、Radio Button、Combo Box控件使用

    Check Box.Radio Button.Combo Box控件使用 使用控件的方法 1.拖动控件到对话框 2. 定义控件对应的变量(值变量或者控件变量) 3.响应控件各种消息 Check Box ...

  4. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  5. DES加密模式详解

    DES加密模式详解 http://www.cnblogs.com/Lawson/archive/2012/05/20/2510781.html http://www.blogjava.net/wayn ...

  6. secureCRT连接linux系统

    linux和secureCRT利用ssh协议22端口进行远程连接的 连接如果没有成功,请检查远程主机的端口和ssh是否开启 一.检查看SSH服务是否开启 当然有的linux系统使用的命令是/etc/i ...

  7. centos6.8系统安装 Hadoop 2.7.3伪分布式集群

    安装 Hadoop 2.7.3 配置ssh免密码登陆 cd ~/.ssh                       # 若没有该目录,请先执行一次ssh localhost ssh-keygen - ...

  8. 利用mycat实现基于mysql5.5主从复制的读写分离

    整体步骤: 1.准备好两台服务器,一台作为主数据库服务器,一台作为从服务器,并安装好mysql数据库,此处略 2.配置好主从同步 3.下载JDK配置mycat依赖的JAVA环境,mycat采用java ...

  9. 通达OA系统故障解决案例记录

    案例1: 现象:在人员访问量大的时候OA系统经卡死,并且经常宕机,需要启动apache服务 优化配置如下: D:\MYOA\conf\http.conf 修改参数如下: <IfModule mp ...

  10. Ex 6_19 至多用k枚硬币兑换价格_第七次作业

    子问题定义: 定义一个二维数组b,其中b[i][j]表示用i个硬币是否能兑换价格j,表示第i个币种的面值, 递归关系: 初值设定: 求解顺序: 按下标从小到大依次求解数组b每一列的值,最后二维数组b的 ...