机器学习编程语言之争,Python夺魁

随着科技的发展,拥有高容量、高速度和多样性的大数据已经成为当今时代的主题词。数据科学领域中所采用的机器学习编程语言大相径庭。究竟哪种语言最适合机器学习成为争论不休的话题。近日,密西根州立大学的博士生Sebastian Raschka再次发起了机器学习编程语言之争,分析了自己选择Python的原因。

目前,机器学习牵涉的编程语言十分多样,包括了MATLAB、Julia、R、Perl、Python、Ruby等等。首先,Raschka定义了语言好坏的原则:一门好的语言应该使得编写、调试和执行代码的总时间最短。然后,他花大篇幅讲述了一个简单的道理——没有一门语言是对所有情况、所有人都十分适合的。

Roberto Waltman:“在这种唯一正确的方式下,面向对象的Spaghetti code就是Lasagna code。”

针对具体的应用场景以及参与项目的人员,开发团队或个人要对任务需求进行评估,再结合人员对于各个语言的熟悉程度和语言生态环境的情况等等,作出选择。接下来,Raschka开始正式点评各个语言相对与Python在机器学习时的优缺点。

表现平平的MATLAB

作为机器学习、模式识别等方面经常使用的工具,MATLAB被放在了第一个分析。Raschka认为,MATLAB在实现机器学习算法时要比Python或者NumPy更加自然。很多高校也在计算机科学相关的课程中教授MATLAB语言。然而,MATLAB也存在很多的缺点:价格昂贵、非开源、性能表现平平、语法不符合程序员的习惯等。例如,MATLAB中矩阵乘积运算操作为X.dot(Y),而Python为X@W,更加简洁、明了。

各种语言相对于C的测试性能——C的性能为1.0,越小越好
从上图可以看出,MATLAB的性能比Python、Go、Java等语言要差很多。Raschka也提到,上图中Python的性能也表现不好。但是,现在性能强劲的GPU为Python提供了强大的后盾。在2010年的时候,Python中的Theano库在CPU上运行时,其速度是NumPy的1.8倍。而Theano在GPU上运行时,其速度就是NumPy的11倍。因此,在目前更高性能的GPU的帮助下,Python性能已经有了更大的改进。

貌似很强大的Julia

作为一门新型的语言,Julia在设计之处就充分借鉴了C/Ruby/Python等语言的经验,试图重新融合众家之长,为科学计算提供一个有力的工具。Raschka充分认可了该语言。然而,对于其未来Julia是否会流行,Raschka持保留态度。

Bjarne Stroustrup:世界上只有两种语言——大家一直在抱怨的和无人问津的。

Raschka认为一个语言是否有用又很大程度上取决于其是否流行。只有被广大编程人员所熟知的编程语言,相关的库才会更多,遇到问题时也能够方便的找到答案,且易于团队合作和代码分享。语言本身也会随着社区的关注不断得以改善。在流行度上,Julia并没有什么优势。

R语言本身无错

接下来,Raschka又提到了R语言。其实,Raschka之前使用过R语言,而且还专门撰写了一部有关R语言中Heat map的书。而且,他自己也不认为R语言存在任何令人不满意的地方。据Spectrum IEEE统计,在2015年排名前十的编程语言中,R语言是提升最快的。近期,微软对R语言表现出极大的兴趣。并且很快,微软的Azure便开始支持R语言了。

Alan J. Perlis:当某人说“我想要一门编程语言。它要能够根据我的目标自动生成代码”。让他拿根棒棒糖,一边玩去吧!

Raschka总结R和Python之间的不同在于,R是统计学家开发的(数学)语言,而Python是计算领域科学家开发,可以应用到统计学的编程语言。这就是说,二者都可以很好的应用于数据科学或者机器学习,但Python的语法更容易被程序员所接受。

Perl的没落

Raschka简单分析了Perl语言。作为一门古老的语言,Perl已经不可避免的走向了没落。Raschka表示,Perl曾经是他学习的第一门语言。但是,Perl目前主要用于简单的脚本编写,已经很少应用在机器学习的算法编写方面。

老而弥坚的Python

最后,Raschka夸赞了自己所喜爱的Python语言。尽管Python已经走过了20多年的风雨历程,Raschka认为它仍然可以继续流行下去。而且,Raschka还不遗余力的列出了自己最喜欢的Python工具——NumPy、Theano、scikit-learnmatplotlib等。

至于Ruby、Java、Scala、Lua等,Raschka没有亲身体验,暂未点评。

对于Raschka的言论,很多人表示赞同,也有不少人反对。有人表示,自己从R切换到Python,主要原因也是Python更方便与团队之外的人进行合作和沟通。也有人表示,作为一个新入门的程序员,利用R进行数据科学的编程可以利用很多现成的库,十分得心应手。更有与Python打过8年交道的资深程序员表示,Julia十分具有吸引力,愿意花时间去尝试该语言。亲爱的读者朋友,你眼中最好的机器学习编程语言又是哪个呢?


感谢魏星对本文的审校。

给InfoQ中文站投稿或者参与内容翻译工作,请邮件至editors@cn.infoq.com。也欢迎大家通过新浪微博(@InfoQ@丁晓昀),微信(微信号:InfoQChina)关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入InfoQ读者交流群)。

【QCon上海2015】国内外专家云集,解读最新技术趋势和最佳实践。畅销书《番茄工作法图解》作者Staffan Nöteberg、Azul Systems联合创始人兼CTO、著名JVM专家Gil Tene、Uber首席系统架构师、分布式系统专家Matt Ranney以及Twitter Heron核心开发者符茂松与您相约QCon上海!了解详情

机器学习编程语言之争,Python夺魁的更多相关文章

  1. 机器学习编程语言之争,Python 夺魁【转载+整理】

    原文地址 en cn 本文内容 表现平平的 MATLAB 貌似强大的 Julia 本身无错的 R 语言 逐渐没落的 Perl 老而弥坚的 Python 我个人很喜欢 Python~ 随着科技的发展,拥 ...

  2. 四大机器学习编程语言对比:R、Python、MATLAB、Octave

    本文作者是一位机器学习工程师,他比较了四种机器学习编程语言(工具):R.Python.MATLAB 和 OCTAVE.作者列出了这些语言(工具)的优缺点,希望对想开始学习它们的人有用. 图源:Pixa ...

  3. 机器学习实践:《Python机器学习实践指南》中文PDF+英文PDF+代码

    机器学习是近年来渐趋热门的一个领域,同时Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一.<Python机器学习实践指南>结合了机器学习和Python 语言两个热门的领域 ...

  4. 干货 | 请收下这份2018学习清单:150个最好的机器学习,NLP和Python教程

    机器学习的发展可以追溯到1959年,有着丰富的历史.这个领域也正在以前所未有的速度进化.在之前的一篇文章中,我们讨论过为什么通用人工智能领域即将要爆发.有兴趣入坑ML的小伙伴不要拖延了,时不我待! 在 ...

  5. 机器学习1—简介及Python机器学习环境搭建

    简介 前置声明:本专栏的所有文章皆为本人学习时所做笔记而整理成篇,转载需授权且需注明文章来源,禁止商业用途,仅供学习交流.(欢迎大家提供宝贵的意见,共同进步) 正文: 机器学习,顾名思义,就是研究计算 ...

  6. 机器学习、NLP、Python和Math最好的150余个教程(建议收藏)

    编辑 | MingMing 尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展.最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整 ...

  7. 机器学习之线性回归(纯python实现)][转]

    本文转载自:https://juejin.im/post/5a924df16fb9a0634514d6e1 机器学习之线性回归(纯python实现) 线性回归是机器学习中最基本的一个算法,大部分算法都 ...

  8. day02-操作系统、编程语言分类及python安装

    目录 操作系统 编程语言分类 安装python解释器 操作系统 操作系统有什么用 操作系统能接受外部指令转化成0和1,并把一些对硬件的复杂操作简化成一个个简单的接口,作为中间人连接硬件和软件 计算机三 ...

  9. 超过 150 个最佳机器学习,NLP 和 Python教程

    超过 150 个最佳机器学习,NLP 和 Python教程 微信号 & QQ:862251340微信公众号:coderpai简书地址:http://www.jianshu.com/p/2be3 ...

随机推荐

  1. Deep Learning(深度学习)学习笔记整理系列 一

    声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部 ...

  2. emwin之在WM_INIT_DIALOG分支下使用带触发功能的函数的程序框架

    @2018-08-29 [小记] 为避免在窗口创建时由于使用了带触发功能的函数导致执行一些在初始化过程中不允许的操作,特整理一个流程架构 --① 定义一个初始化完成的标志 unsigned ; --② ...

  3. WC 2019 记

    “在下一次挑战来临时,还能否有足够的勇气和力量重新提起这被震掉两次的剑呢?” 难得来参加一次$WC$,这是第一次来,也很有可能是最后一次了(我也好希望有下一次啊,哪怕这可能再渺小,如同浩瀚星空中一丝辰 ...

  4. cf757F Team Rocket Rises Again (dijkstra+支配树)

    我也想要皮卡丘 跑一遍dijkstra,可以建出一个最短路DAG(从S到任意点的路径都是最短路),然后可以在上面建支配树 并不会支配树,只能简单口胡一下在DAG上的做法 建出来的支配树中,某点的祖先集 ...

  5. Eclipse 插件Maven在使用 add dependency,找不到包,解决办法

    通过右键单击pom.xml文件选择maven –> add dependency 或者是打开pom.xml文件,选择dependencies –>add 时,搜索不到依赖的jar包,解决方 ...

  6. SimpleDateFormat是线程不安全的,切忌切忌!

    多线程方法中使用了共享变量SimpleDateFormat,报如下错误: java.lang.NumberFormatException: multiple points  at sun.misc.F ...

  7. codeforces 793B - Igor and his way to work(dfs、bfs)

    题目链接:http://codeforces.com/problemset/problem/793/B 题目大意:告诉你起点和终点,要求你在只能转弯两次的情况下能不能到达终点.能就输出“YES”,不能 ...

  8. 洛谷P1850 换教室

    令人印象深刻的状态转移方程... f[i][j][0/1]表示前i个换j次,第i次是否申请时的期望. 注意可能有重边,自环. 转移要分类讨论,距离是上/这次成功/失败的概率乘相应的路程. 从上次的0/ ...

  9. 原生js操作option

    <script type="text/javascript"> // 1.动态创建select function createSelect() { var mySele ...

  10. java8中的stream().filter()的使用和Optional()

    转: https://www.cnblogs.com/yimiyan/p/5992440.html Optional: https://www.cnblogs.com/zhangboyu/p/7580 ...