在面试中关于多线程同步,你必须要思考的问题 一文中,我们知道glibc的pthread_cond_timedwait底层是用linux futex机制实现的。

理想的同步机制应该是没有锁冲突时在用户态利用原子指令就解决问题,而需要挂起等待时再使用内核提供的系统调用进行睡眠与唤醒。换句话说,在用户态的自旋失败时,能不能让进程挂起,由持有锁的线程释放锁时将其唤醒?
如果你没有较深入地考虑过这个问题,很可能想当然的认为类似于这样就行了(伪代码):

void lock(int lockval) {
//trylock是用户级的自旋锁
while(!trylock(lockval)) {
wait();//释放cpu,并将当期线程加入等待队列,是系统调用
}
} boolean trylock(int lockval){
int i=0;
//localval=1代表上锁成功
while(!compareAndSet(lockval,0,1)){
if(++i>10){
return false;
}
}
return true;
} void unlock(int lockval) {
compareAndSet(lockval,1,0);
notify();
}

上述代码的问题是trylock和wait两个调用之间存在一个窗口:
如果一个线程trylock失败,在调用wait时持有锁的线程释放了锁,当前线程还是会调用wait进行等待,但之后就没有人再唤醒该线程了。

为了解决上述问题,linux内核引入了futex机制,futex主要包括等待和唤醒两个方法:futex_waitfutex_wake,其定义如下

//uaddr指向一个地址,val代表这个地址期待的值,当*uaddr==val时,才会进行wait
int futex_wait(int *uaddr, int val);
//唤醒n个在uaddr指向的锁变量上挂起等待的进程
int futex_wake(int *uaddr, int n);

futex在真正将进程挂起之前会检查addr指向的地址的值是否等于val,如果不相等则会立即返回,由用户态继续trylock。否则将当期线程插入到一个队列中去,并挂起。

关于同步的一点思考-上文章中对futex的背景与基本原理有介绍,对futex不熟悉的人可以先看下。

本文将深入分析futex的实现,让读者对于锁的最底层实现方式有直观认识,再结合之前的两篇文章(关于同步的一点思考-上关于同步的一点思考-下)能对操作系统的同步机制有个全面的理解。

下文中的进程一词包括常规进程与线程。

futex_wait

在看下面的源码分析前,先思考一个问题:如何确保挂起进程时,val的值是没有被其他进程修改过的?

代码在kernel/futex.c中

static int futex_wait(u32 __user *uaddr, int fshared,
u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
{
struct hrtimer_sleeper timeout, *to = NULL;
struct restart_block *restart;
struct futex_hash_bucket *hb;
struct futex_q q;
int ret; ... //设置hrtimer定时任务:在一定时间(abs_time)后,如果进程还没被唤醒则唤醒wait的进程
if (abs_time) {
...
hrtimer_init_sleeper(to, current);
...
} retry:
//该函数中判断uaddr指向的值是否等于val,以及一些初始化操作
ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
//如果val发生了改变,则直接返回
if (ret)
goto out; //将当前进程状态改为TASK_INTERRUPTIBLE,并插入到futex等待队列,然后重新调度。
futex_wait_queue_me(hb, &q, to); /* If we were woken (and unqueued), we succeeded, whatever. */
ret = 0;
//如果unqueue_me成功,则说明是超时触发(因为futex_wake唤醒时,会将该进程移出等待队列,所以这里会失败)
if (!unqueue_me(&q))
goto out_put_key;
ret = -ETIMEDOUT;
if (to && !to->task)
goto out_put_key; /*
* We expect signal_pending(current), but we might be the
* victim of a spurious wakeup as well.
*/
if (!signal_pending(current)) {
put_futex_key(fshared, &q.key);
goto retry;
} ret = -ERESTARTSYS;
if (!abs_time)
goto out_put_key; ... out_put_key:
put_futex_key(fshared, &q.key);
out:
if (to) {
//取消定时任务
hrtimer_cancel(&to->timer);
destroy_hrtimer_on_stack(&to->timer);
}
return ret;
}
在将进程阻塞前会将当期进程插入到一个等待队列中,需要注意的是这里说的等待队列其实是一个类似Java HashMap的结构,全局唯一。 struct futex_hash_bucket {
spinlock_t lock;
//双向链表
struct plist_head chain;
}; static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
着重看futex_wait_setup和两个函数futex_wait_queue_me static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
struct futex_q *q, struct futex_hash_bucket **hb)
{
u32 uval;
int ret;
retry:
q->key = FUTEX_KEY_INIT;
//初始化futex_q
ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
if (unlikely(ret != 0))
return ret; retry_private:
//获得自旋锁
*hb = queue_lock(q);
//原子的将uaddr的值设置到uval中
ret = get_futex_value_locked(&uval, uaddr); ...
//如果当期uaddr指向的值不等于val,即说明其他进程修改了
//uaddr指向的值,等待条件不再成立,不用阻塞直接返回。
if (uval != val) {
//释放锁
queue_unlock(q, *hb);
ret = -EWOULDBLOCK;
} ...
return ret;
}
函数futex_wait_setup中主要做了两件事,一是获得自旋锁,二是判断*uaddr是否为预期值。 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
struct hrtimer_sleeper *timeout)
{
//设置进程状态为TASK_INTERRUPTIBLE,cpu调度时只会选择
//状态为TASK_RUNNING的进程
set_current_state(TASK_INTERRUPTIBLE);
//将当期进程(q封装)插入到等待队列中去,然后释放自旋锁
queue_me(q, hb); //启动定时任务
if (timeout) {
hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
if (!hrtimer_active(&timeout->timer))
timeout->task = NULL;
} /*
* If we have been removed from the hash list, then another task
* has tried to wake us, and we can skip the call to schedule().
*/
if (likely(!plist_node_empty(&q->list))) { //如果没有设置过期时间 || 设置了过期时间且还没过期
if (!timeout || timeout->task)
//系统重新进行进程调度,这个时候cpu会去执行其他进程,该进程会阻塞在这里
schedule();
}
//走到这里说明又被cpu选中运行了
__set_current_state(TASK_RUNNING);
}

futex_wait_queue_me中主要做几件事:

  1. 将当期进程插入到等待队列
  2. 启动定时任务
  3. 重新调度进程

如何保证条件与等待之间的原子性

futex_wait_setup方法中会加自旋锁;在futex_wait_queue_me中将状态设置为TASK_INTERRUPTIBLE,调用queue_me将当期线程插入到等待队列中,然后才释放自旋锁。也就是说检查uaddr的值的过程跟进程挂起的过程放在同一个临界区中。当释放自旋锁后,这时再更改addr地址的值已经没有关系了,因为当期进程已经加入到等待队列中,能被wake唤醒,不会出现本文开头提到的没人唤醒的问题。

futex_wait小结

总结下futex_wait流程:

  1. 加自旋锁
  2. 检测*uaddr是否等于val,如果不相等则会立即返回
  3. 将进程状态设置为TASK_INTERRUPTIBLE
  4. 将当期进程插入到等待队列中
  5. 释放自旋锁
  6. 创建定时任务:当超过一定时间还没被唤醒时,将进程唤醒
  7. 挂起当前进程

futex_wake

futex_wake

static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
{
struct futex_hash_bucket *hb;
struct futex_q *this, *next;
struct plist_head *head;
union futex_key key = FUTEX_KEY_INIT;
int ret; ...
//根据uaddr的值填充&key的内容
ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
if (unlikely(ret != 0))
goto out;
//根据&key获得对应uaddr所在的futex_hash_bucket
hb = hash_futex(&key);
//对该hb加自旋锁
spin_lock(&hb->lock);
head = &hb->chain;
//遍历该hb的链表,注意链表中存储的节点是plist_node类型,而而这里的this却是futex_q类型,这种类型转换是通过c中的container_of机制实现的
plist_for_each_entry_safe(this, next, head, list) {
if (match_futex (&this->key, &key)) {
...
//唤醒对应进程
wake_futex(this);
if (++ret >= nr_wake)
break;
}
}
//释放自旋锁
spin_unlock(&hb->lock);
put_futex_key(fshared, &key);
out:
return ret;
}

futex_wake流程如下:

  1. 找到uaddr对应的futex_hash_bucket,即代码中的hb
  2. 对hb加自旋锁
  3. 遍历fb的链表,找到uaddr对应的节点
  4. 调用wake_futex唤起等待的进程
  5. 释放自旋锁

wake_futex中将制定进程状态设置为TASK_RUNNING并加入到系统调度列表中,同时将进程从futex的等待队列中移除掉,具体代码就不分析了,有兴趣的可以自行研究。

End

Java中的ReentrantLock,Object.wait和Thread.sleep等等底层都是用futex进行线程同步,理解futex的实现能帮助你更好的理解与使用这些上层的同步机制。另外因篇幅与精力有限,涉及到进程调度的相关内容没有具体分析,不过并不妨碍理解文章内容。

原文:Java架构笔记

免费Java高级资料需要自己领取,涵盖了Java、Redis、MongoDB、MySQL、Zookeeper、Spring Cloud、Dubbo高并发分布式等教程,一共30G。                 
传送门:                 https://mp.weixin.qq.com/s/JzddfH-7yNudmkjT0IRL8Q

linux内核级同步机制--futex的更多相关文章

  1. Linux内核的同步机制

    本文详细的介绍了Linux内核中的同步机制:原子操作.信号量.读写信号量和自旋锁的API,使用要求以及一些典型示例 一.引言 在现代操作系统里,同一时间可能有多个内核执行流在执行,因此内核其实象多进程 ...

  2. Linux内核的同步机制---自旋锁

    自旋锁的思考:http://bbs.chinaunix.net/thread-2333160-1-1.html 近期在看宋宝华的<设备驱动开发具体解释>第二版.看到自旋锁的部分,有些疑惑. ...

  3. Linux内核抢占实现机制分析【转】

    Linux内核抢占实现机制分析 转自:http://blog.chinaunix.net/uid-24227137-id-3050754.html [摘要]本文详解了Linux内核抢占实现机制.首先介 ...

  4. Linux内核中锁机制之RCU、大内核锁

    在上篇博文中笔者分析了关于完成量和互斥量的使用以及一些经典的问题,下面笔者将在本篇博文中重点分析有关RCU机制的相关内容以及介绍目前已被淘汰出内核的大内核锁(BKL).文章的最后对<大话Linu ...

  5. Linux内核中锁机制之信号量、读写信号量

    在上一篇博文中笔者分析了关于内存屏障.读写自旋锁以及顺序锁的相关内容,本篇博文将着重讨论有关信号量.读写信号量的内容. 六.信号量 关于信号量的内容,实际上它是与自旋锁类似的概念,只有得到信号量的进程 ...

  6. 大话Linux内核中锁机制之RCU、大内核锁

    大话Linux内核中锁机制之RCU.大内核锁 在上篇博文中笔者分析了关于完成量和互斥量的使用以及一些经典的问题,下面笔者将在本篇博文中重点分析有关RCU机制的相关内容以及介绍目前已被淘汰出内核的大内核 ...

  7. 大话Linux内核中锁机制之信号量、读写信号量

    大话Linux内核中锁机制之信号量.读写信号量 在上一篇博文中笔者分析了关于内存屏障.读写自旋锁以及顺序锁的相关内容,本篇博文将着重讨论有关信号量.读写信号量的内容. 六.信号量 关于信号量的内容,实 ...

  8. Linux内核态抢占机制分析(转)

    Linux内核态抢占机制分析  http://blog.sina.com.cn/s/blog_502c8cc401012pxj.html 摘 要]本文首先介绍非抢占式内核(Non-Preemptive ...

  9. Linux内核中锁机制之完成量、互斥量

    在上一篇博文中笔者分析了关于信号量.读写信号量的使用及源码实现,接下来本篇博文将讨论有关完成量和互斥量的使用和一些经典问题. 八.完成量 下面讨论完成量的内容,首先需明确完成量表示为一个执行单元需要等 ...

随机推荐

  1. Maven设置本地仓和阿里云远程仓

    在maven项目导入jar包坐标时需要连接maven官方仓库下载,但是下载速度感人,所以来修改一下设置. 设置成为本地仓和连接阿里云的远程仓库. (本地仓如果没有这个jar) 找出相应配置文件:例如我 ...

  2. JS基础语法---循环语句之:for 循环 + 9个练习

    for循环 语法: for(表达式1;表达式2;表达式3){ 循环体; } 执行过程: 先执行一次表达式1,然后判断表达式2;如果不成立则直接跳出循环 如果表达式2成立,执行循环体的代码,结束后,跳到 ...

  3. 权限管理——ACL权限

    权限管理 ACL权限 用于解决用户对文件身份不足 命令:[root@localhost ~]#dumpe2fs -h /dev/sd3 作用:查询指定分区详细的文件系统给信息 选项 -h:仅显示超级块 ...

  4. 查找发布地图的 REST URL并查询相关信息

    1.登录ArcGIS Server Manager 2.登录后,里面是以前自己发布的地图服务 3.点击自己发布的地图,然后按下功能选项,再点击箭头来找到URL 4.点击进去,分别能从红圈中找到相关的信 ...

  5. 第三方库Mantle的源码解析

    Mantle是一个用于简化Cocoa或Cocoa Touch程序中model层的第三方库.通常我们的应该中都会定义大量的model来表示各种数据结构,而这些model的初始化和编码解码都需要写大量的代 ...

  6. 修改postgresql 密码

    sudo -u postgres psql -c "alter user postgres password '123456';"

  7. HttpContext.Current.Server.MapPath("") 未将对象设置到引用的

    在多线程中使用该方法获取目录报错:未将对象设置到引用 #region 上传图片到腾讯 public async Task<Result> UploadImageToWX(string ba ...

  8. [C11] 推荐系统(Recommender Systems)

    推荐系统(Recommender Systems) 问题阐述(Problem Formulation) 将 推荐系统 纳入这门课程来讲有以下两个原因: 第一.仅仅因为它是机器学习中的一个重要的应用.在 ...

  9. luoguP2178 [NOI2015]品酒大会(后缀自动机)

    题意 承接上篇题解 考虑两个后缀的\(lcp\)是什么,是将串反着插入后缀自动机后两个前缀(终止节点)的\(lca\)!!!于是可以在parent tree上DP了. 比后缀数组又简单又好写跑的还快. ...

  10. ionic4之ion-sliders

    <ion-content class="details_"> <img class="courimg_" src="assets/i ...