Steps involved in the Federated Learning Approach

  • The mobile devices download the global ML model

  • Data is being generated while the user is using application linked with the ML model

  • As the user starts to interact with the application more, the user gets much better predictions according to his usage

  • Once the model is ready for the scheduled sync with the server. The personalised model that was getting trained with the on device capability is sent to the server.

  • Models from all the devices are collected and a Federated average function is used to generate a much imporved version of the model than the previous one

  • Once trained the improved version is sent to all the devices where the user gets the experience based on the usage by all the devices arround the globe.

Installing PySyft

In order to install PySyft, it is recommended that you set up a conda environment first

conda create -n pysyft python=3
conda activate pysyft
conda install jupyter notebook

You then need to install the package

pip install syft

Step by Step guide to develop the neural network using federated learning approach

Importing the libraries:

  • Numpy

  • PyTorch

  • PySyft

  • Pickle

import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader
import time
import copy
import numpy as np
import syft as sy
from syft.frameworks.torch.federated import utils
from syft.workers.websocket_client import WebsocketClientWorker

Initializing the training parameters

Learning rate 0.001

Neural network 100 epoches

total batches 8

class Parser:
def __init__(self):
self.epoches = 100
self.lr = 0.001
self.test_batch_size = 8
self.batch_size =8
self.log_interval = 10
self.seed = 1 args = Parser()
torch.manual_seed(args.seed)

Dataset Preprocessing

with open('boston_housing.pickle','rb') as f:
((x,y),(x_test,y_test)) = pickle.load(f) x = torch.from_numpy(x).float()
y = torch.from_numpy(y).float() x_test = torch.from_numpy(x_test).float()
y_test = torch.from_numpy(y_test).float()
mean = x.mean(0,keepdim=True)

dev = x.std(0,keepdim=True)

mean[:,3] = 0.

dev[:,3] = 1.

x = (x-mean)/dev
x_test = (x_test - mean)/dev train = TensorDataset(x,y)
test = TensorDataset(x_test,y_test) train_loader = DataLoader(train,batch_size = args.batch_size,shuffle=True)
train_loader = DataLoader(test,batch_size=args.test_batch_size,shuffle=True)

Creating Neural Network with PyTorch

Creating the architecture of the neural network model

class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()
self.fc1 = nn.Linear(13,32)
self.fc2 = nn.Linear(32,24)
self.fc3 = nn.Linear(24,16)
self.fc4 = nn.Linear(16,1) def __init__(self):
x = x.view(-1,13)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc4(x))
x = self.fc(x)
return x

Connecting the data with the remote mobile devices

Though data will be available offline for federated learning with the workers but here we are sending the data over to the workers for training with ondevice capability

remote_dataset = (list(), list())
train_distributed_dataset = [] for batch_idx, (data,target) in enumerate(train_loader):
data = data.send(compute_nodes[batch_idx % len(compute_nodes)])
target = target.send(compute_nodes[batch_idx % len(compute_nodes)])
remote_dataset[batch_idx % len(compute_nodes)].append((data, target)) bobs_model = Net()
alices_model = Net()
bobs_optimizer = optim.SGD(bobs_model.parameters(), lr=args.lr)
alices_optimizer = optim.SGD(alices_model.parameters(), lr=args.lr) models = [bobs_model,alices_model]
optimizers = [bobs_optimizer,alices_optimizer] model = Net()

Connect to the workers or the devices for training

hook = sy.TorchHook(torch)
bob_worker = sy.VirtualWorker(hook, id="bob")
alice_worker = sy.VirtualWorker(hook, id="alice")
compute_nodes = [bob_worker, alice_worker]

Training the Neural Network

def update(data, target, model, optimizer):
model.send(data.location)
optimizer.zero_grad()
prediction = model(data)
loss = F.mse_loss(prediction.view(-1), target)
loss.backward()
optimizer.step()
return model def train():
for data_index in range(len(remote_dataset[0])-1):
for remote_index in range(len(compute_nodes)):
data, target = remote_dataset[remote_index][data_index]
models[remote_index] = update(data, target, models[remote_index], optimizers[remote_index])
for model in models:
model.get()
return utils.federated_avg({
"bob": models[0],
"alice": models[1]
})
def test(federated_model):
federated_model.eval()
test_loss = 0
for data, target in test_loader:
output = federated_model(data)
test_loss += F.mse_loss(output.view(-1), target, reduction='sum').item()
predection = output.data.max(1, keepdim=True)[1] test_loss /= len(test_loader.dataset)
print('Test set: Average loss: {:.4f}'.format(test_loss))
for epoch in range(args.epochs):
start_time = time.time()
print(f"Epoch Number {epoch + 1}")
federated_model = train()
model = federated_model
test(federated_model)
total_time = time.time() - start_time
print('Communication time over the network', round(total_time, 2), 's\n')

References:

Federated Learning with PySyft

联邦学习PySyft的更多相关文章

  1. 联邦学习开源框架FATE助力腾讯神盾沙箱,携手打造数据安全合作生态

    近日,微众银行联邦学习FATE开源社区迎来了两位新贡献者——来自腾讯的刘洋及秦姝琦,作为云计算安全领域的专家,两位为FATE构造了新的功能点,并在Github上提交修复了相关漏洞.(Github项目地 ...

  2. 联邦学习(Federated Learning)

    联邦学习简介        联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是 ...

  3. 联邦学习 Federated Learning 相关资料整理

    本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://githu ...

  4. 腾讯数据安全专家谈联邦学习开源项目FATE:通往隐私保护理想未来的桥梁

    数据孤岛.数据隐私以及数据安全,是目前人工智能和云计算在大规模产业化应用过程中绕不开的“三座大山”. “联邦学习”作为新一代的人工智能算法,能在数据不出本地的情况下,实现共同建模,提升AI模型的效果, ...

  5. Federal Learning(联邦学习)认知

    本人是学生党,同时也是小菜鸡一枚,撞运气有机会能够给老师当项目助理,在这个过程中肯定会学到一些有趣的知识,就在此平台上记录一下,在知识点方面有不对的还请各位指正. What(什么是联邦学习?) 联邦学 ...

  6. Apache Pulsar 在腾讯 Angel PowerFL 联邦学习平台上的实践

    腾讯 Angel PowerFL 联邦学习平台 联邦学习作为新一代人工智能基础技术,通过解决数据隐私与数据孤岛问题,重塑金融.医疗.城市安防等领域. 腾讯 Angel PowerFL 联邦学习平台构建 ...

  7. MindSpore联邦学习框架解决行业级难题

    内容来源:华为开发者大会2021 HMS Core 6 AI技术论坛,主题演讲<MindSpore联邦学习框架解决隐私合规下的数据孤岛问题>. 演讲嘉宾:华为MindSpore联邦学习工程 ...

  8. 联邦学习:按Dirichlet分布划分Non-IID样本

    我们在<Python中的随机采样和概率分布(二)>介绍了如何用Python现有的库对一个概率分布进行采样,其中的dirichlet分布大家一定不会感到陌生.该分布的概率密度函数为 \[P( ...

  9. 【流行前沿】联邦学习 Federated Learning with Only Positive Labels

    核心问题:如果每个用户只有一类数据,如何进行联邦学习? Felix X. Yu, , Ankit Singh Rawat, Aditya Krishna Menon, and Sanjiv Kumar ...

随机推荐

  1. 【linux运维】linux系统上忘记密码如何操作

    目录 红帽系统忘记密码操作 红帽系统设置ip,主机名 centos系统忘记密码操作 一.红帽系统忘记密码操作 1)再出现以下界面后按键盘e键 2)进入以下界面后,再次按e键 3)使用上下键选择第2项或 ...

  2. 搞定Junit单元测试{非专业}

    1:测试分类 2:常用测试方法 2.1 断言语句 3: 基本测试 4: 组合测试 5:参数化测试 6:分类测试(Category) 1:测试分类  1. 黑盒测试:不需要写代码,给输入值,看程序是否能 ...

  3. 如何在Mac上配置iTerm2以及给ITerm2配置lrzsz

    Mac安装ITerm2: https://www.jianshu.com/p/9c3439cc3bdb 给ITerm2配置lrzsz: https://www.cnblogs.com/sunshine ...

  4. Java SPI机制实战详解及源码分析

    背景介绍 提起SPI机制,可能很多人不太熟悉,它是由JDK直接提供的,全称为:Service Provider Interface.而在平时的使用过程中也很少遇到,但如果你阅读一些框架的源码时,会发现 ...

  5. WDA入门教程Ⅰ:Web Dynpro for ABAP 入门(转)

    转自:https://www.jianshu.com/p/68c1592f1a87 WDA全称Web Dynpro for ABAP,也写作WD4A或WDA,是用于在ABAP环境中开发Web应用程序的 ...

  6. sql 小全

    前些日子sql用到哪里写到哪里,乱七八糟,今天整理了一下,以作备份(虽然开通博客已经八个月了,但是今天还是第一次发表博文,好紧张啊~~) --2014.08.27号整理sql语句 1:进入数据库 us ...

  7. ASP.Net MVC 路由及路由调试工具RouteDebug

    一.路由规则 1.可以创建多条路由规则,每条路由的name属性不相同 2.路由规则有优先级,最上面的路由规则优先级越高 App_Start文件下的:RouteConfig.cs public stat ...

  8. Python 字符串用法总结

    一.将某个对象转换为字符串,有str()和repr()两种方法 区别:repr() 转化为供解释器读取的形式str() 转化为适于人阅读的形式 a = 123456 print('repr输出:', ...

  9. springboot 使用 jedis 连接 Redis 数据库

    1. 在 pom.xml 配置文件中添加依赖 <!-- redis 依赖 --> <dependency> <groupId>org.springframework ...

  10. 初学JavaScript正则表达式(十一)

    JavaScript的对象属性 整理自慕课网教学 点此进入