BFS基础

广度优先搜索(Breadth First Search)用于按离始节点距离、由近到远渐次访问图的节点,可视化BFS

通常使用队列(queue)结构模拟BFS过程,关于queue见:算法与数据结构基础 - 队列(Queue)

最直观的BFS应用是图和树的遍历,其中图常用邻接表或矩阵表示,例如 LeetCode题目 690. Employee Importance:

// LeetCode 690. Employee Importance
/*
class Employee {
public:
int id;
int importance;
vector<int> subordinates;
};
*/
// Input: [[1, 5, [2, 3]], [2, 3, []], [3, 3, []]], 1 Output: 11
class Solution {
public:
int getImportance(vector<Employee*> employees, int id) {
int res=;
unordered_map<int,Employee*> m;
for(Employee* e:employees) m[e->id]=e;
queue<Employee*> q;
q.push(m[id]);
while(!q.empty()){
Employee* cur=q.front();q.pop();
res+=cur->importance;
for(auto s:cur->subordinates) q.push(m[s]);
}
return res;
}
};

相关LeetCode题:

690. Employee Importance  题解

513. Find Bottom Left Tree Value  题解

101. Symmetric Tree  题解

529. Minesweeper  题解

133. Clone Graph  题解

拓扑排序(Topological Sort)也应用了BFS遍历思想、以达成按依赖关系排序的目的,关于拓扑排序见:算法与数据结构基础 - 拓扑排序(Topological Sort)

层信息

BFS思路是从某节点层层往外扩展,一些场景下我们需要处理层(level)相关的信息,例如 LeetCode题目 102. Binary Tree Level Order Traversal:

class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> res;
if(root==NULL) return res;
queue<TreeNode*> q;
q.push(root);
while(!q.empty()){
int size=q.size();
vector<int> tmp;
for(int i=;i<size;i++){ //处理当前level
TreeNode* cur=q.front();q.pop();
tmp.push_back(cur->val);
if(cur->left) q.push(cur->left);
if(cur->right) q.push(cur->right);
}
res.push_back(tmp);
}
return res;
}
};

以上代码不单遍历了树节点,还加了按层(level)处理,注意以上代码与遍历代码的细微差别。

相关LeetCode题:

102. Binary Tree Level Order Traversal  题解

429. N-ary Tree Level Order Traversal  题解

111. Minimum Depth of Binary Tree  题解

993. Cousins in Binary Tree  题解

515. Find Largest Value in Each Tree Row  题解

最短距离

BFS另一个重要的应用就是求最短路径,可以是单点到单点、单点到多点、多点到多点之间的路径。

当问题出现最小(minimum)、最短(shortest)等字样时可考虑用BFS求解,一般求解思路是 1/找出满足条件的起始点,2/由起始点开始进行BFS,3/遇到终点结束。

相关LeetCode题:

994. Rotting Oranges  题解

127. Word Ladder  题解

286. Walls and Gates  题解

505. The Maze II  题解

815. Bus Routes  题解

854. K-Similar Strings  题解

以上例题路径之间没有差别,更复杂的一种情况是路径具备权重。对有权图求解最短路径,一般情况下会想到Bellman-Ford、Dijkstra算法,而BFS思想是这些算法思想的核心。

相关LeetCode题:

避免BFS死循环

因问题不同、访问临近节点的方式各异,在使用BFS时我们可能会遇到重复访问某一节点的情况。

为了避免重复访问节点造成死循环,常用hashtable来记录节点是否已经被访问。

相关LeetCode题:

490. The Maze  题解

864. Shortest Path to Get All Keys   题解

算法与数据结构基础 - 广度优先搜索(BFS)的更多相关文章

  1. 算法与数据结构基础 - 深度优先搜索(DFS)

    DFS基础 深度优先搜索(Depth First Search)是一种搜索思路,相比广度优先搜索(BFS),DFS对每一个分枝路径深入到不能再深入为止,其应用于树/图的遍历.嵌套关系处理.回溯等,可以 ...

  2. 算法与数据结构基础 - 图(Graph)

    图基础 图(Graph)应用广泛,程序中可用邻接表和邻接矩阵表示图.依据不同维度,图可以分为有向图/无向图.有权图/无权图.连通图/非连通图.循环图/非循环图,有向图中的顶点具有入度/出度的概念. 面 ...

  3. 【数据结构与算法Python版学习笔记】图——词梯问题 广度优先搜索 BFS

    词梯Word Ladder问题 要求是相邻两个单词之间差异只能是1个字母,如FOOL变SAGE: FOOL >> POOL >> POLL >> POLE > ...

  4. 广度优先搜索 BFS算法

    广度优先搜索算法(Breadth-First-Search,BFS),又称作宽度优先搜索.BFS算法是从根节点开始,沿着树的宽度遍历树的节点.如果所有节点均被访问,则算法中止. 算法思想 1.首先将根 ...

  5. 算法与数据结构基础 - 堆(Heap)和优先级队列(Priority queue)

    堆基础 堆(Heap)是具有这样性质的数据结构:1/完全二叉树 2/所有节点的值大于等于(或小于等于)子节点的值: 图片来源:这里 堆可以用数组存储,插入.删除会触发节点shift_down.shif ...

  6. 广度优先搜索 BFS 学习笔记

    广度优先搜索 BFS 学习笔记 引入 广搜是图论中的基础算法之一,属于一种盲目搜寻方法. 广搜需要使用队列来实现,分以下几步: 将起点插入队尾: 取队首 \(u\),如果 $u\to v $ 有一条路 ...

  7. 算法与数据结构基础 - 队列(Queue)

    队列基础 队列具有“先进先出”的特点,用这个特点我们可以用它来处理时间序列相关或先后次序相关的问题,例如 LeetCode题目 933. Number of Recent Calls,时间复杂度O(1 ...

  8. 深度优先搜索DFS和广度优先搜索BFS简单解析(新手向)

    深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每个点仅被访问一次,这个过程就是图的遍历.图的遍历常用的有深度优先搜索和广度优先搜索,这两者对于有向图和无向图 ...

  9. 利用广度优先搜索(BFS)与深度优先搜索(DFS)实现岛屿个数的问题(java)

    需要说明一点,要成功运行本贴代码,需要重新复制我第一篇随笔<简单的循环队列>代码(版本有更新). 进入今天的主题. 今天这篇文章主要探讨广度优先搜索(BFS)结合队列和深度优先搜索(DFS ...

随机推荐

  1. 管理python虚拟环境的工具virtuelenvwrapper

    virtuelenvwrapper出现的原因 virtualenv 的一个最大的缺点就是: ​ 每次开启虚拟环境之前要去虚拟环境所在目录下的 bin 目录下 source 一下 activate,这就 ...

  2. 【算法随记三】小半径中值模糊的急速实现(16MB图7.5ms实现) + Photoshop中蒙尘和划痕算法解读。

    在本人的博客里,分享了有关中值模糊的O(1)算法,详见:任意半径中值滤波(扩展至百分比滤波器)O(1)时间复杂度算法的原理.实现及效果 ,这里的算法的执行时间和参数是无关的.整体来说,虽然速度也很快, ...

  3. java集合框架collection(2)ArrayList和LinkedList

    ArrayList是基于动态数组实现的list,而LinkedList是基于链表实现的list.所以,ArrayList拥有着数组的特性,LinkedList拥有着链表的特性. 优缺点 ArrayLi ...

  4. .NET开发框架(二)-框架功能简述

    若视频播放不了,请点击 这里查看 本框架为响应式SPA框架,支持PC与手机端的屏幕自适应.手机展示效果视频在文章末尾查看. 框架入口地址:http://letyouknow.net/ 1.框架登录界面 ...

  5. Spring Batch 入门级示例教程

    Spring Batch 入门级示例教程 我将向您展示如何使用Spring Boot创建一个的Spring Batch的Hello World示例. (循序渐进) 因此,如果您是Spring Batc ...

  6. 阿里云ssl证书NGINX配置https,wss

    server { listen 443; server_name server.sentiger.com; ssl on; root /home/wwwroot/Service/beta/public ...

  7. 如何用css实线所需要的小三角

    使用css实现三角符号 关于使用css制作三角符号,网上有很多的例子了,在这里只是为了详细的向各位解释一下三角符号的原理 下图,是一个长宽为100px,边框宽度为100px的一个元素,由此可见,在cs ...

  8. 喵星人教你 HTTP 状态码

    在我们日常 Web 开发中,或多或少的都接触过 HTTP 状态码,那这些状态码代表什么意思呢?熟悉这些状态码又有什么好处呢?下面我就为大家一一道来,可以把本片文章'收藏'以备不时之需. HTTP 状态 ...

  9. 微信小程序map组件z-index的层级问题

    说起微信小程序的map组件,可以说是良心之作了,一个组件解决了所以接入地图的所有麻烦,但是在实际小程序的试用过程中还是存在点问题的.如下情景:刚开始接入map组件的时候是在微信开发工具的模拟器上预览的 ...

  10. 001-python3 初识

    一.python的起源 python是一门 解释型弱类型编程语言. 特点: 简单.明确.优雅 二.python的解释器 CPython. 官方提供的. 内部使用c语言来实现 PyPy. 一次性把我们的 ...