首先以一维随机游走(1D Random Walks)为例来介绍下随机游走(Random Walks)算法,如下图所示,从某点出发,随机向左右移动,向左和向右的概率相同,都为1/2,并且到达0点或N点则不能移动,那么如何求该点到达目的地N点的概率。

  该问题可以描述为如下数学形式:

P(0) = 0

P(N) = 1

P(x) = 1/2*P(x - 1) + 1/2*P(x + 1) for x = 1, 2, 3, … , N-1

  如果用矩阵形式描述,即:

那么通过求解该线性方程组就可以得到各个点到达目的地N点的概率,以上就是一维随机游走算法原理。

[Grady et al. 2006]提出了利用随机游走思想来分割二维图像,文章将图像考虑成一张图(Graph),每个像素对应图中一个节点,根据亮度差值定义节点间的权重(相当于一维随机游走中向左和向右的概率),然后用户指定前景(foreground)和背景(background)标签(相当于一维随机游走中N点和0点),通过求解线性方程组就可以得到各个像素点属于前景或背景的概率,如果将阈值概率设置为0.5,那么就可以分割得到期望的图像区域。

[Lai et al. 2008]将这种思想扩展到三维网格分割,文章将网格中每个三角片对应图中一个节点,利用相邻三角片之间的二面角来定义节点之间的权重,具体如下:

对于三角片fi,定义一个fi与相邻三角片fi,k(k = 1, 2, 3)之间几何差异的函数d(fi, fi,k):

d(fi, fi,k) = η·[1 – cos(dihedral(fi, fi,k))] = η/2·||Ni – Ni,k||2

其中:dihedral(fi, fi,k)代表相邻三角片fi与fi,k之间的二面角,Ni为三角片fi的法向,对于凹边η设置为1.0,对于凸边η设置为0.2。

  将d归一化:

  节点之间的权重pi,k可以根据函数d(fi, fi,k)给定:

  同样通过求解线性方程组可以得到网格分割效果。

  [Zhang et al. 2010]对[Lai et al. 2008]的网格分割算法做了部分改进,文章将网格中每个顶点对应图中一个节点,由于一个网格的三角片数量通常是顶点数量的2倍左右,这样求解的方程变量数就会减少一半左右,计算速度就会得到提高。

效果:

 

本文为原创,转载请注明出处:http://www.cnblogs.com/shushen

参考文献:

[1] Grady, L., "Random Walks for Image Segmentation," in Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.28, no.11, pp.1768-1783, Nov. 2006

[2] Yu-Kun Lai, Shi-Min Hu, Ralph R. Martin, and Paul L. Rosin. 2008. Fast mesh segmentation using random walks. In Proceedings of the 2008 ACM symposium on Solid and physical modeling (SPM '08). ACM, New York, NY, USA, 183-191.

[3] Zhang, J., Wu, C., Cai, J., Zheng, J. and Tai, X.-c. (2010), Mesh Snapping: Robust Interactive Mesh Cutting Using Fast Geodesic Curvature Flow. Computer Graphics Forum, 29: 517–526.

基于随机游走的三维网格分割算法(Random Walks)的更多相关文章

  1. 推荐系统之基于图的推荐:基于随机游走的PersonalRank算法

    转自http://blog.csdn.net/sinat_33741547/article/details/53002524 一 基本概念 基于图的模型是推荐系统中相当重要的一种方法,以下内容的基本思 ...

  2. 图推荐-基于随机游走的personrank算法

    转自http://blog.csdn.net/sinat_33741547/article/details/53002524 一 基本概念 基于图的模型是推荐系统中相当重要的一种方法,以下内容的基本思 ...

  3. 三维网格分割算法(Random Walks)

    首先以一维随机游走(1D Random Walks)为例来介绍下随机游走(Random Walks)算法,如下图所示,从某点出发,随机向左右移动,向左和向右的概率相同,都为1/2,并且到达0点或N点则 ...

  4. 介绍一个全局最优化的方法:随机游走算法(Random Walk)

    1. 关于全局最优化求解   全局最优化是一个非常复杂的问题,目前还没有一个通用的办法可以对任意复杂函数求解全局最优值.上一篇文章讲解了一个求解局部极小值的方法--梯度下降法.这种方法对于求解精度不高 ...

  5. 重启随机游走算法(RWR:Random Walk with Restart)

    1 pagerank算法的基本原理 Pagerank算法是Google的网页排名算法,由拉里佩奇发明.其基本思想是民主表决.在互联网上,如果一个网页被很多其他网页所链接,说明它受到普遍的承认和信赖,那 ...

  6. 【Matlab】随机游走产生图像效果

    随机游走类似布朗运动,就是随机的向各个方向走吧.产生的图像实在漂亮,所以还是贴出分享. clear all; close all; clc; n=100000; x= 0; y= 0; pixel=z ...

  7. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  8. LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)

    写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...

  9. 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元

    题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...

随机推荐

  1. random,time,sys,os

    import random print(random.random()) #(0,1)大于0且小于1之间的小数 print(random.randint(1,3)) #大于等于1且小于等于3之间的整数 ...

  2. Git的一些简单而且常用的操作

    转载自我自己的博客 介绍 很多初学者可能并不太清楚Git 与GitHub 这两个概念的联系和区别,在这里我大致介绍一下这两个名词. Git 是一个免费.开源的分布式版本控制系统(VCS).版本控制系统 ...

  3. 机器学习之K均值聚类

      聚类的核心概念是相似度或距离,有很多相似度或距离的方法,比如欧式距离.马氏距离.相关系数.余弦定理.层次聚类和K均值聚类等 1. K均值聚类思想   K均值聚类的基本思想是,通过迭代的方法寻找K个 ...

  4. 小白学python-day04-运算符、while循环相关

    今天是day04.以下是学习总结. 但行努力,莫问前程. ----------------------------------------------------------------------- ...

  5. Uploadify.js引用导致浏览器宽度计算错误,布局混乱

    首先,本人新手,高手勿喷,请忽略.谢谢. 今天在写代码的时候遇到一个奇葩问题,我再在页面加载完成以后,动态计算DIV宽度,将整个层铺满浏览器.一切正常.单当我引入jquery.uploadify.js ...

  6. 10G文件如何对里面单词出现排序

    10G文件如何对里面单词出现排序的问题(只要文件系统支持,不限大小). 其实这个问题很简单,10G文件是很大,但是出现的字符或单词是很有限的. 单字符只有那么一百多个,单词数量满打满算,以英文单词总数 ...

  7. 高级查询语句____ Mysql

    MySQL高级查询 高级查询 关键字书写顺序  关键字执行顺序select:投影结果       1    5 from:定位到表             2    1 where:分组前第一道过滤  ...

  8. android 界面提示框架WisdomProgressHUD,为金典而生

    一:简述 今天给android开发者们,推荐一个金典的界面提示框架WisdomProgressHUD,使用简洁方便. WisdomProgressHUD 是一个半透明的 HUD 指示器. Wisdom ...

  9. Java 内存模型详解

    概述 Java的内存模型(Java Memory Model )简称JMM.首先应该明白,Java内存模型是一个规范,主要规定了以下两点: 规定了一个线程如何以及何时可以看到其他线程修改过后的共享变量 ...

  10. 【JDK】JDK源码分析-Vector

    概述 上文「JDK源码分析-ArrayList」主要分析了 ArrayList 的实现原理.本文分析 List 接口的另一个实现类:Vector. Vector 的内部实现与 ArrayList 类似 ...