一、dropout的提出和原理

在2012年,Hinton在其论文《Improving neural networks by preventing co-adaptation of feature detectors》中提出Dropout,目的是为了缓解模型的过拟合。

 co-adaptation:在神经网络中,隐藏层单元之间有很高的相关性。

原理:我们都知道通过平均多个不同网络的预测输出可以很好地降低error,但是这种方法训练和测试时计算代价巨大。Dropout的本质其实与之类似,当每次训练随机忽略部分hidden units的时候(其实就是只用这些高相关性的隐藏层单元的一部分),就相当于在训练不同的模型。

可参考hinton的另一篇论文《Dropout: A Simple Way to Prevent Neural Networks from Overfitting》。

二、dropout的工作流程

训练:dropout是随机的置一些神经元为0,仅仅使用一部分神经元,在backward阶段,只改变那些神经元不为0的节点的参数。

测试:dropout的概率置1,不使用dropout。

三、dropout的代码演示

注意,输出的非0元素是原来的 “1/keep_prob” 倍,保证数据在整体上保持一致。

import tensorflow as tf

dropout = tf.placeholder(tf.float32)
x = tf.Variable(tf.ones([10, 10]))
y = tf.nn.dropout(x, dropout) init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
print(sess.run(x))
print (sess.run(y, feed_dict = {dropout: 0.5}))

对应输出

[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]
[[0. 2. 0. 2. 2. 0. 2. 0. 0. 2.]
[0. 0. 0. 2. 0. 0. 0. 0. 0. 0.]
[2. 0. 0. 2. 0. 2. 2. 0. 0. 2.]
[2. 2. 0. 2. 2. 0. 2. 2. 0. 2.]
[0. 0. 0. 0. 0. 2. 0. 0. 0. 0.]
[0. 2. 2. 2. 0. 2. 2. 0. 2. 0.]
[2. 0. 0. 0. 2. 2. 0. 0. 2. 0.]
[2. 2. 2. 2. 0. 0. 2. 0. 2. 0.]
[0. 2. 0. 0. 0. 0. 2. 0. 2. 0.]
[0. 2. 0. 0. 0. 0. 0. 2. 2. 2.]]

Drop_out--防止过拟合的更多相关文章

  1. Neural Network Toolbox使用笔记1:数据拟合

    http://blog.csdn.net/ljp1919/article/details/42556261 Neural Network Toolbox为各种复杂的非线性系统的建模提供多种函数和应用程 ...

  2. 使用matlab进行空间拟合

    假设有这么一组数据, x=[4 5 6 7 8 4 8 10]'; y=[56 56 56 56 56 60 60 60]';z=[6 6 6 9 6 19 6 6]'; 要求出其平面方程z=C+Ax ...

  3. 局部加权回归、欠拟合、过拟合(Locally Weighted Linear Regression、Underfitting、Overfitting)

    欠拟合.过拟合 如下图中三个拟合模型.第一个是一个线性模型,对训练数据拟合不够好,损失函数取值较大.如图中第二个模型,如果我们在线性模型上加一个新特征项,拟合结果就会好一些.图中第三个是一个包含5阶多 ...

  4. 数据的平面拟合 Plane Fitting

    数据的平面拟合 Plane Fitting 看到了一些利用Matlab的平面拟合程序 http://www.ilovematlab.cn/thread-220252-1-1.html

  5. 关于过拟合、局部最小值、以及Poor Generalization的思考

    Poor Generalization 这可能是实际中遇到的最多问题. 比如FC网络为什么效果比CNN差那么多啊,是不是陷入局部最小值啊?是不是过拟合啊?是不是欠拟合啊? 在操场跑步的时候,又从SVM ...

  6. PRML读书后记(一): 拟合学习

    高斯分布·拟合 1.1 优美的高斯分布 中心极限定理[P79]证明均匀分布和二项分布在数据量 $N\rightarrow \infty$ 时,都会演化近似为高斯分布. 作为最晚发现的概率分布,可以假设 ...

  7. [CC]平面拟合

    常见的平面拟合方法一般是最小二乘法.当误差服从正态分布时,最小二乘方法的拟合效果还是很好的,可以转化成PCA问题. 当观测值的误差大于2倍中误差时,认为误差较大.采用最小二乘拟合时精度降低,不够稳健. ...

  8. paper 123: SVM如何避免过拟合

    过拟合(Overfitting)表现为在训练数据上模型的预测很准,在未知数据上预测很差.过拟合主要是因为训练数据中的异常点,这些点严重偏离正常位置.我们知道,决定SVM最优分类超平面的恰恰是那些占少数 ...

  9. 如何在java中拟合正态分布

    前言 最近在工作中需要拟合高斯曲线,在python中可以使用 scipy,相关代码如下: #!/usr/bin/env python # -*- coding=utf-8 -*- %matplotli ...

  10. overfitting过拟合

    来自:https://www.zhihu.com/question/32246256 其实不完全是噪声和假规律会造成过拟合. (1)打个形象的比方,给一群天鹅让机器来学习天鹅的特征,经过训练后,知道了 ...

随机推荐

  1. idea安装以及使用

    1. 简介1.1 IDEA 全称 IntelliJ IDEA,是java语言开发的集成环境,IntelliJ在业界被公认为最好的java开发工具之一,尤其在智能代码助手.代码自动提示.重构. J2EE ...

  2. MongoDB学习笔记(四、MongoDB安全管理)

    目录: mongoDB角色 mongoDB初始化账号 mongoDB安全认证 其它常用的命令 mongoDB角色: mongoDB初始化账号: 1.启动mongoDB ./mongod -f mong ...

  3. 基于ORB-SLAM2的图片识别

    基于ORB-SLAM2的图片识别,其功能是首先运行ORB-SLAM2,在运行过程中调起另一个线程进行图像识别,识别成功后在图片上渲染AR中的立方体模型. 识别过程主要基于ORB-SLAM2中的BoW算 ...

  4. .NET Core 3.1 Preview 1 发布

    今天,我们正式发布 .NET Core 3.1 Preview 1..NET Core 3.1将是一个小版本,着重于Blazor和Windows桌面开发的功能改进,同时这也是.NET Core 3.0 ...

  5. python画一片绿叶给你

    怎么用 turtle 画一个 π 字,于是我顺手到网上大致搜了下,发现网上没有画这个 π 字的,接着又用谷歌加英文搜索了下,还是没找到现成的答案. 不过通过这次搜索意外发现了一个有趣的网站,网站上有大 ...

  6. python同名函数同名参数问题

    如果python有两个函数的函数名与参数列表都相同那么调用该函数时,哪个函数在后,则哪个被最终调用. 举例如下: def test(): print "before hello" ...

  7. webUploader的使用

    webUploader的使用记录 WebUploader是由Baidu WebFE(FEX)团队开发的一个简单的以HTML5为主,FLASH为辅的现代文件上传组件.在现代的浏览器里面能充分发挥HTML ...

  8. C#实现数据回滚,A事件和B事件同时执行,其中任何一个事件执行失败,都会返回失败

    /// <summary> /// 执行数据库回滚操作,用于sql语句执行失败后,恢复执行前的数据 /// </summary> /// <param name=&quo ...

  9. 常用regex正则表达式

    [单个]字符匹配 任意字符:表示由任意字符组成 \\:匹配一个'\' \n:匹配换行 \t:匹配制表符 [单个]字符集(可以从里面任选一个字符) [abc]:可以是字母abc中任意一个 [^abc]: ...

  10. charles突然不能抓取PC请求解决办法

    我在使用charles的时候,突然一天不能抓取PC请求了,原来是我本地开启了手动代理设置,且手动代理的端口号和charles的端口号不一致导致.