题目链接:http://codeforces.com/contest/811/problem/E

题意:给定一个行数为10 列数10w的矩阵,每个方块是一个整数, 给定l和r 求范围内的联通块数量 所谓联通块即数字相等

题解:显然可以用线段树来维护一下,一共就10行。线段树唯一难处理的就是push_up不好弄,这一要利用一下并查集,因为求的是连通块

的个数。具体看一下代码的注释。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int M = 1e5 + 10;
struct TnT {
int l , r , sum;
int lsum[11] , rsum[11];
}T[M << 2];
int f[M << 4] , a[11][M];
int n , m , q , tot;
//并查集并的是她们连通块的种类。
void init() {
for(int i = 1 ; i <= n * m ; i++) {
f[i] = i;
}
}
int find(int x) {
if(x == f[x]) return x;
int tmp = find(f[x]);
return f[x] = tmp;
}
TnT push_up(int mid , TnT le , TnT re) {
TnT ans;
ans.sum = le.sum + re.sum;
for(int j = 1 ; j <= n ; j++) {
f[le.lsum[j]] = le.lsum[j];
f[le.rsum[j]] = le.rsum[j];
f[re.lsum[j]] = re.lsum[j];
f[re.rsum[j]] = re.rsum[j];
}//这里一定要这样赋值一下因为合并的时候这两部分肯定不属于同意连通块,所以不能让她们的父亲相同,而且她们的父亲会在合并的时候变成相同的所以这里要每次给她们定一个新父亲。
for(int j = 1 ; j <= n ; j++) {
if(a[j][mid] == a[j][mid + 1]) {
int t1 = find(le.rsum[j]) , t2 = find(re.lsum[j]);
if(t1 != t2) {
ans.sum--;
f[t1] = t2;
}//显然如果不是相同父亲的sum--
}
}
for(int j = 1 ; j <= n ; j++) {
ans.lsum[j] = find(le.lsum[j]);
ans.rsum[j] = find(re.rsum[j]);
}//pushup一下ans的lsum于rsum
ans.l = le.l , ans.r = re.r;
return ans;
}
void build(int i , int l , int r) {
int mid = (l + r) >> 1;
T[i].l = l , T[i].r = r , T[i].sum = 0;
if(l == r) {
for(int j = 1 ; j <= n ; j++) {
if(a[j][l] == a[j - 1][l]) {
T[i].lsum[j] = T[i].rsum[j] = T[i].lsum[j - 1];//如果相邻两个一样那么她们肯定属于一个连通块所以连通块下表一样,
}
else {
T[i].lsum[j] = T[i].rsum[j] = ++tot;
T[i].sum++;
}
}
return ;
}
build(i << 1 , l , mid);
build((i << 1) | 1 , mid + 1 , r);
T[i] = push_up(mid , T[i << 1] , T[(i << 1) | 1]);
}
TnT query(int i , int l , int r) {
int mid = (T[i].l + T[i].r) >> 1;
if(T[i].l == l && T[i].r == r) {
return T[i];
}
T[i] = push_up(mid , T[i << 1] , T[(i << 1) | 1]);
if(mid < l) return query((i << 1) | 1 , l , r);
else if(mid >= r) return query(i << 1 , l , r);
else {
return push_up(mid , query(i << 1 , l , mid) , query((i << 1) | 1 , mid + 1 , r));
}
}
int main() {
scanf("%d%d%d" , &n , &m , &q);
tot = 0;
for(int i = 1 ; i <= n ; i++) {
for(int j = 1 ; j <= m ; j++) {
scanf("%d" , &a[i][j]);
}
}
init();
build(1 , 1 , m);
while(q--) {
int x , y;
scanf("%d%d" , &x , &y);
printf("%d\n" , query(1 , x , y).sum);
}
return 0;
}

codeforces 811 E. Vladik and Entertaining Flags(线段树+并查集)的更多相关文章

  1. 【Codeforces811E】Vladik and Entertaining Flags [线段树][并查集]

    Vladik and Entertaining Flags Time Limit: 20 Sec  Memory Limit: 512 MB Description n * m的矩形,每个格子上有一个 ...

  2. 2022.02.27 CF811E Vladik and Entertaining Flags(线段树+并查集)

    2022.02.27 CF811E Vladik and Entertaining Flags(线段树+并查集) https://www.luogu.com.cn/problem/CF811E Ste ...

  3. [WC2005]双面棋盘(线段树+并查集)

    线段树+并查集维护连通性. 好像 \(700ms\) 的时限把我的常数超级大的做法卡掉了, 必须要开 \(O_2\) 才行. 对于线段树的每一个结点都开左边的并查集,右边的并查集,然后合并. \(Co ...

  4. codeforces 811E Vladik and Entertaining Flags(线段树+并查集)

    codeforces 811E Vladik and Entertaining Flags 题面 \(n*m(1<=n<=10, 1<=m<=1e5)\)的棋盘,每个格子有一个 ...

  5. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

  6. 【XSY2707】snow 线段树 并查集

    题目描述 有\(n\)个人和一条长度为\(t\)的线段,每个人还有一个工作范围(是一个区间).最开始整条线段都是白的.定义每个人的工作长度是这个人的工作范围中白色部分的长度(会随着线段改变而改变).每 ...

  7. bzoj 2054: 疯狂的馒头(线段树||并查集)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2054 线段树写法: 点的颜色只取决于最后一次染的颜色,所以我们可以倒着维护,如果当前区间之前 ...

  8. ZOJ 4100 浙江省第16届大学生程序设计竞赛 A题 Vertices in the Pocket 线段树+并查集

    正赛的时候完全没看这个题,事后winterzz告诉我他想出来的解法. 首先题意是给出n个点,m次操作. 操作有一种是连接两个点,另一种是求此时再为这个图连k条边,最少和最多能有几个联通块. 最少的求法 ...

  9. 【CF687D】Dividing Kingdom II 线段树+并查集

    [CF687D]Dividing Kingdom II 题意:给你一张n个点m条边的无向图,边有边权$w_i$.有q个询问,每次给出l r,问你:如果只保留编号在[l,r]中的边,你需要将所有点分成两 ...

随机推荐

  1. Android 属性动画实战

    什么是属性动画? 属性动画可以通过直接更改 View 的属性来实现 View 动画.例如: 通过不断的更改 View 的坐标来实现让 View 移动的效果: 通过不断的更改 View 的背景来实现让 ...

  2. golang 结合实例更好的理解参数传递和指针

    关于参数传递 其实go的参数传递,核心就是一句话:go里所有参数传递都是值传递,既把参数复制一份放到函数里去用. go的函数传参,不管参数是什么类型,都会复制一份,然后新的参数在函数内部被使用. 不像 ...

  3. SQL中一些实用的快捷键

    Ctrl+A全选 快速选中一行: 若光标在这条语句末尾用Shift+Home 若光标在这条语句开头用Shift+End Ctrl+K+U快捷注释本行 Ctrl+K+C反注释 Ctrl+R  关闭下面的 ...

  4. spark源码阅读---Utils.getCallSite

    1 作用 当该方法在spark内部代码中调用时,会返回当前调用spark代码的用户类的名称,以及其所调用的spark方法.所谓用户类,就是我们这些用户使用spark api的类. 2 内部实现 2.1 ...

  5. Windows Server 2008创建域环境

    介绍一下域环境搭建,域主要用于中大型企业,小型企业计算机数量不多,而中大型企业计算机比较多,使用域可以方便管理,安全性也比在工作组中安全 1.安装完操作系统默认都属于WORKGROUP工作组. 2.安 ...

  6. 深入研究BufferedInputStream内幕

    目录 1 概述 2 BufferedInputStream源码分析 3 BufferedInputStream在实际场景中,没有太多用处 4 BufferedInputStream唯一使用场景 1 概 ...

  7. 【Isabella Message】 【SPOJ - ISAB】【模拟】【矩阵的旋转】

    思路 题目链接 题意:题目中先给了一个N阶矩阵样子的字符,后给了一个mask,然后又给出你应该认识的一些单词,最后是让你输出最终字典序最小的一句话. 思路:根据题目要求模拟即可.这里会用到string ...

  8. 决策树ID3原理及R语言python代码实现(西瓜书)

    决策树ID3原理及R语言python代码实现(西瓜书) 摘要: 决策树是机器学习中一种非常常见的分类与回归方法,可以认为是if-else结构的规则.分类决策树是由节点和有向边组成的树形结构,节点表示特 ...

  9. 微信小程序项目总结-记账小程序(包括后端)

    一.小程序部分 这是理财系统的前端,江苏海洋大学微信小程序比赛,最后获得了一等奖 GitHub:https://github.com/GeorgeLeoo/finance 1. 项目描述 (1). 此 ...

  10. php opcodes(vld)翻译教程

    一.php opcodes的由来(如果你只想知道如何解php opcodes就直接跳过这步) 1.PHP内核-Zend引擎的详解:https://www.php.cn/php-weizijiaoche ...