题目网址:http://poj.org/problem?id=3259

题目:

Wormholes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 52198   Accepted: 19426

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: NM, and W 
Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
 
思路:

我们根本不需要关心他所处的起点的具体位置,我们只需要判断是否有负权环即可,所以将所有的dist[i]都初始化为无穷大。有负权环的话就输出YES,没有的话就输出NO。很自然地就会想到Bellman-Ford算法。判断第n次循环,是否还会松弛,如果还需要就说明有负权环。 这道题需要注意的一点是:虫洞是单向边,路径是双向边。
 
代码:
 #include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int inf = ;
struct node{
int v,u,w;
};
vector<node>v;
int n,m,w;
int dist[];
node x;
bool relax(int j){//松弛操作
if(dist[v[j].u]>dist[v[j].v]+v[j].w){
dist[v[j].u]=dist[v[j].v]+v[j].w;
return true;
}
return false;
}
bool bellman_ford(){
for (int i=; i<=n; i++) {
dist[i]=inf;
}
for (int i=; i<n-; i++) {
int flag=;
for (int j=; j<v.size(); j++) {
if(relax(j)) flag=;
}
if(!flag) return false;
}
for (int j=; j<v.size(); j++) {//核心
if(relax(j)) return true;
}
return false;
}
int main(){
int t;
cin>>t;
while (t--) {
int ok=;
v.clear();
cin>>n>>m>>w;
for (int i=; i<m; i++) {
cin>>x.v>>x.u>>x.w;
v.push_back(x);
swap(x.v, x.u);
v.push_back(x);
}
for (int i=; i<w; i++) {
cin>>x.v>>x.u>>x.w;
x.w=-x.w;
v.push_back(x);
}
if (bellman_ford()) printf("YES\n");
else printf("NO\n");
}
return ;
}

POJ 3259 Wormholes(Bellman-Ford)的更多相关文章

  1. POJ 3259 Wormholes Bellman题解

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/.未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  2. ACM: POJ 3259 Wormholes - SPFA负环判定

     POJ 3259 Wormholes Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu   ...

  3. 最短路(Bellman_Ford) POJ 3259 Wormholes

    题目传送门 /* 题意:一张有双方向连通和单方向连通的图,单方向的是负权值,问是否能回到过去(权值和为负) Bellman_Ford:循环n-1次松弛操作,再判断是否存在负权回路(因为如果有会一直减下 ...

  4. poj - 3259 Wormholes (bellman-ford算法求最短路)

    http://poj.org/problem?id=3259 农夫john发现了一些虫洞,虫洞是一种在你到达虫洞之前把你送回目的地的一种方式,FJ的每个农场,由n块土地(编号为1-n),M 条路,和W ...

  5. POJ 3259 Wormholes(最短路径,求负环)

    POJ 3259 Wormholes(最短路径,求负环) Description While exploring his many farms, Farmer John has discovered ...

  6. POJ 3259 Wormholes (Bellman_ford算法)

    题目链接:http://poj.org/problem?id=3259 Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submis ...

  7. poj 3259 Wormholes

    题目连接 http://poj.org/problem?id=3259 Wormholes Description While exploring his many farms, Farmer Joh ...

  8. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  9. POJ 3259 Wormholes(最短路,判断有没有负环回路)

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 24249   Accepted: 8652 Descri ...

  10. POJ 3259——Wormholes——————【最短路、SPFA、判负环】

    Wormholes Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit St ...

随机推荐

  1. Day20 磁盘管理2之RAID卡

    1.磁盘的基本分区Gdisk 前面我们已经了解到fdisk分区,但fdisk不支持给高于2TB的磁盘进行分区.如果有单块盘高于2TB,建议使用Gdisk进行分区. 1.使用gdisk进行磁盘分区 1. ...

  2. 采用WPF技术,开发OFD电子文档阅读器

    前言 OFD是国家标准版式文档格式,于2016年生效.OFD文档国家标准参见<电子文件存储与交换格式版式文档>.既然是国家标准,OFD随后肯定会首先在政务系统使用,并逐步推向社会各个方面. ...

  3. 003:CSS三大重点之一:盒子模型

    目录 1:盒子模型 2:边框: 2.1:合写 2.2:适用于:table系元素.边框合并 3:内边距 4:外边距: 4.1:盒子居中三大条件 4.2:外边距合并.外边距塌陷(父子嵌套)解决方法三种 前 ...

  4. Django-多对多关系的三种创建方式-forms组件使用-cookie与session-08

    目录 表模型类多对多关系的三种创建方式 django forms 组件 登录功能手写推理过程 整段代码可以放过来 forms 组件使用 forms 后端定义规则并校验结果 forms 前端渲染标签组件 ...

  5. seo搜索引擎的优化方法

    现在互联网的入口,一般都是被搜索引擎霸占.所以我们要想让别人搜索时,优先看到我们的网站.有两种方法: 1.竞价排名.这是需要钱的,给的钱越多,排名越靠前.参考某度.. 2.不想花钱,就使用seo搜索引 ...

  6. Beescms_v4.0 sql注入漏洞分析

    Beescms_v4.0 sql注入漏洞分析 一.漏洞描述 Beescms v4.0由于后台登录验证码设计缺陷以及代码防护缺陷导致存在bypass全局防护的SQL注入. 二.漏洞环境搭建 1.官方下载 ...

  7. 转:sqlserver 存储毫秒23:59:59.999变成第二天00:00:00.000

    因为,在SQL SERVER中DATETIME表示的时间为00:00:00到23:59:59.997,它的时间精度为1/300秒,在使用时会舍入到舍入到 .000..003 或 .007 秒三个增量. ...

  8. CentOS6.x环境通过yum命令在线安装或重装zookeeper-server

    一.环境描述: 在CentOS6.x系统环境下,使用yum命令的形式安装zookeeper-server,由于我这里是重新安装zookeeper-server,所以在正式开始之前我需要将原本的zook ...

  9. SpringCloud实现服务间调用(RestTemplate方式)

    上一篇文章<SpringCloud搭建注册中心与服务注册>介绍了注册中心的搭建和服务的注册,本文将介绍下服务消费者调用服务提供者的过程. 本文目录 一.服务调用流程二.服务提供者三.服务消 ...

  10. Spring MVC-从零开始-view-向页面传递data(ModelAndView)

    1.applicationContext.xml <?xml version="1.0" encoding="UTF-8"?> <beans ...