一、初始递归

递归函数:在一个函数里在调用这个函数本身。

递归的最大深度:998

正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去。但是我们之前已经说过关于函数调用的问题,每一次函数调用都会产生一个属于它自己的名称空间,如果一直调用下去,就会造成名称空间占用太多内存的问题,于是python为了杜绝此类现象,强制的将递归层数控制在了997(只要997!你买不了吃亏,买不了上当...).

拿什么来证明这个“998理论”呢?这里我们可以做一个实验:

def foo(n):
print(n)
n += 1
foo(n)
foo(1)

由此我们可以看出,未报错之前能看到的最大数字就是998.当然了,997是python为了我们程序的内存优化所设定的一个默认值,我们当然还可以通过一些手段去修改它:

import sys
print(sys.setrecursionlimit(100000))

我们可以通过这种方式来修改递归的最大深度,刚刚我们将python允许的递归深度设置为了10w,至于实际可以达到的深度就取决于计算机的性能了。不过我们还是不推荐修改这个默认的递归深度,因为如果用997层递归都没有解决的问题要么是不适合使用递归来解决要么是你代码写的太烂了~~~

看到这里,你可能会觉得递归也并不是多么好的东西,不如while True好用呢!然而,江湖上流传这这样一句话叫做:人理解循环,神理解递归。所以你可别小看了递归函数,很多人被拦在大神的门槛外这么多年,就是因为没能领悟递归的真谛。而且之后我们学习的很多算法都会和递归有关系。来吧,只有学会了才有资本嫌弃!

二、递归示例讲解

这里我们又要举个例子来说明递归能做的事情。

例一:

现在你们问我,alex老师多大了?我说我不告诉你,但alex比 egon 大两岁。

你想知道alex多大,你是不是还得去问egon?egon说,我也不告诉你,但我比武sir大两岁。

你又问武sir,武sir也不告诉你,他说他比太白大两岁。

那你问太白,太白告诉你,他18了。

这个时候你是不是就知道了?alex多大?

1 金鑫 18
2 武sir 20
3 egon 22
4 alex 24

你为什么能知道的?

首先,你是不是问alex的年龄,结果又找到egon、武sir、太白,你挨个儿问过去,一直到拿到一个确切的答案,然后顺着这条线再找回来,才得到最终alex的年龄。这个过程已经非常接近递归的思想。我们就来具体的我分析一下,这几个人之间的规律。

age(4) = age(3) + 2
age(3) = age(2) + 2
age(2) = age(1) + 2
age(1) = 40

那这样的情况,我们的函数怎么写呢?

def age(n):
if n == 1:
return 40
else:
return age(n-1)+2 print(age(4))

如果有这样一个列表,让你从这个列表中找到66的位置,你要怎么做?

l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]

你说,so easy!

l.index(66)...

我们之所以用index方法可以找到,是因为python帮我们实现了查找方法。如果,index方法不给你用了。。。你还能找到这个66么?

l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]

i = 0
for num in l:
if num == 66:
print(i)
i+=1

上面这个方法就实现了从一个列表中找到66所在的位置了。

但我们现在是怎么找到这个数的呀?是不是循环这个列表,一个一个的找的呀?假如我们这个列表特别长,里面好好几十万个数,那我们找一个数如果运气不好的话是不是要对比十几万次?这样效率太低了,我们得想一个新办法。

二分查找算法

l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]

你观察这个列表,这是不是一个从小到大排序的有序列表呀?

如果这样,假如我要找的数比列表中间的数还大,是不是我直接在列表的后半边找就行了?

这就是二分查找算法

那么落实到代码上我们应该怎么实现呢?

简单版二分法

l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]

def func(l,aim):
mid = (len(l)-1)//2
if l:
if aim > l[mid]:
func(l[mid+1:],aim)
elif aim < l[mid]:
func(l[:mid],aim)
elif aim == l[mid]:
print("bingo",mid)
else:
print('找不到')
func(l,66)
func(l,6)

升级版二分法

l1 = [1, 2, 4, 5, 7, 9]
def two_search(l,aim,start=0,end=None):
end = len(l)-1 if end is None else end
mid_index = (end - start) // 2 + start
if end >= start:
if aim > l[mid_index]:
return two_search(l,aim,start=mid_index+1,end=end) elif aim < l[mid_index]:
return two_search(l,aim,start=start,end=mid_index-1) elif aim == l[mid_index]:
return mid_index
else:
return '没有此值'
else:
return '没有此值'
print(two_search(l1,9))

我的博客即将搬运同步至腾讯云+社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan

Python递归函数,二分查找算法的更多相关文章

  1. python实现二分查找算法

    二分查找算法也成为折半算法,对数搜索算法,一会中在有序数组中查找特定一个元素的搜索算法.搜索过程是从数组中间元素开始的 如果中间元素正好是要查找的元素,则搜索过程结束:如果查找的数大于中间数,则在数组 ...

  2. 【Python】二分查找算法

    二分查找:在一段数字内,找到中间值,判断要找的值和中间值大小的比较.如果中间值大一些,则在中间值的左侧区域继续按照上述方式查找.如果中间值小一些,则在中间值的右侧区域继续按照上述方式查找.直到找到我们 ...

  3. python函数(4):递归函数及二分查找算法

    人理解循环,神理解递归!  一.递归的定义 def story(): s = """ 从前有个山,山里有座庙,庙里老和尚讲故事, 讲的什么呢? ""& ...

  4. Python递归函数和二分查找算法

    递归函数:在一个函数里在调用这个函数本身. 递归的最大深度:998 正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去.但是我们之前已经说过关于函数调用的问题,每一次函数调用都会产生一个属 ...

  5. Python学习日记(十三) 递归函数和二分查找算法

    什么是递归函数? 简单来说就是在一个函数中重复的调用自己本身的函数 递归函数在调用的时候会不断的开内存的空间直到程序结束或递归到一个次数时会报错 计算可递归次数: i = 0 def func(): ...

  6. 用Python实现的二分查找算法(基于递归函数)

    一.递归的定义 1.什么是递归:在一个函数里在调用这个函数本身 2.最大递归层数做了一个限制:997,但是也可以自己限制 1 def foo(): 2 print(n) 3 n+=1 4 foo(n) ...

  7. python 全栈开发,Day15(递归函数,二分查找法)

    一.递归函数 江湖上流传这这样一句话叫做:人理解循环,神理解递归.所以你可别小看了递归函数,很多人被拦在大神的门槛外这么多年,就是因为没能领悟递归的真谛. 递归函数:在一个函数里执行再调用这个函数本身 ...

  8. Python——递归、二分查找算法

    递归函数 1. 递归 (1)什么是递归:在函数中调用自身函数(2)最大递归深度:默认997/998——是Python从内存角度出发做的限制 n = 0 def story(): global n n+ ...

  9. 二分查找算法(Python版)

    [本文出自天外归云的博客园] 记性不好(@.@),所以平时根本用不到的东西就算学过如果让我去想也会需要很多时间(*.*)! 二分查找算法 在一个有序数组中查找元素最快的算法,也就是折半查找法,先找一个 ...

随机推荐

  1. easyui combobox name选择器

    HTML: <input name="myinputdom" id="myinputdom" class="easyui-combobox my ...

  2. 音频编辑器 OcenAudio v3.1.9.0 绿色便携版

    下载地址:点我 基本介绍 ocenaudio是一款跨平台的,易于使用的,快速的,功能强大的,好用的音频编辑软件.该软件支持Virtual Studio Technology插件,美观.统一的跨平台界面 ...

  3. HashMap源码分析(二):看完彻底了解HashMap

    上文讲到HashMap的增加方法,现在继续 上文链接 HashMap在上一篇源码分析的文章中,如果使用put的时候如果元素数量超过threshold就会调用resize进行扩容 1.扩容机制 想要了解 ...

  4. 【小家Spring】Spring IoC是如何使用BeanWrapper和Java内省结合起来给Bean属性赋值的

    #### 每篇一句 > 具备了技术深度,遇到问题可以快速定位并从根本上解决.有了技术深度之后,学习其它技术可以更快,再深入其它技术也就不会害怕 #### 相关阅读 [[小家Spring]聊聊Sp ...

  5. 【DFS练习】【最大的蛋糕块】-C++

    这道题目是一个基本的dfs模板(?)下面日常贴一波dfs的基本模板: void dfs()//参数用来表示状态 { if(到达终点状态) { ...//根据题意添加 return; } if(越界或者 ...

  6. SSAS多维设计模型与报表客户端-Excel透视表制作

    VS:SSAS设计多维设计模型: 数据源视图.dsv: 数据源视图表,名称命名规范:vw_表名(事实表_F_/维表_D_),

  7. 利用openpyxl模块处理excel表格

    一.选取表格中的内容创建图表 1.openpyxl支持利用工作表中单元格的数据,创建条形图.折线图.散点图等.步骤如下: 1).从一个矩形区域选择的单元格,创建一个Reference对象. 2).通过 ...

  8. linux svn 中文 https://my.oschina.net/VASKS/blog/659236

    https://my.oschina.net/VASKS/blog/659236 设置服务器: export LC_ALL=zh_CN.UTF-8长久之计, echo export LC_ALL=zh ...

  9. SP1026 FAVDICE - Favorite Dice[期望DP]

    也许更好的阅读体验 \(\mathcal{Description}\) 一个\(n\)面的骰子,求期望掷几次能使得每一面都被掷到 输入有\(T\)组数据,每次输入一个\(n\) 输出保留两位小数 \( ...

  10. Amdahl定律理解

    其中,a为并行计算部分所占比例,k为并行处理的个数. 当1-a=0时,(没有串行,只有并行)最大加速比s=n: 当a=0时,(只有串行,没有并行)最小加速比s=1: 当k→∞时,s → 1 /(1-a ...