windows 10 上源码编译OpenCV并支持CUDA | compile opencv with CUDA support on windows 10
本文首发于个人博客https://kezunlin.me/post/6580691f/,欢迎阅读!
compile opencv with CUDA support on windows 10
Series
- Part 1: compile opencv on ubuntu 16.04
- Part 2: compile opencv with CUDA support on windows 10
- Part 3: opencv mat for loop
- Part 4: speed up opencv image processing with openmp
Guide
requirements:
- windows: 10
- opencv: 3.1.0
- nvidia driver: gtx 1060 382.05 (gtx 970m)
- GPU arch(s): sm_61 (sm_52)
- cuda: 8.0
- cudnn: 5.0.5
- cmake: 3.10.0
- vs: vs2015 64
nvidia cuda CC
笔记本版本的显卡和台式机的计算能力是有差距的。

cpu vs gpu
for opencv functions

get source
Get opencv 3.1.0 for git and fix some bugs
git clone https://github.com/opencv/opencv.git
cd opencv
git checkout -b v3.1.0 3.1.0
# fix bugs for 3.1.0
git cherry-pick 10896
git cherry-pick cdb9c
git cherry-pick 24dbb
git branch
master
* v3.1.0
compile
mkdir build && cd build && cmake-gui ..
config
configure with VS 2015 win64 with options
BUILD_SHARED_LIBS ON
CMAKE_CONFIGURATION_TYPES Release # Release
CMAKE_CXX_FLAGS_RELEASE /MD /O2 /Ob2 /DNDEBUG /MP # for multiple processor
WITH_VTK OFF
BUILD_PERF_TESTS OFF # if ON, build errors occur
WITH_CUDA ON
CUDA_TOOLKIT_ROOT_DIR C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0
#CUDA_ARCH_BIN 3.0 3.5 5.0 5.2 6.0 6.1 # very time-consuming
CUDA_ARCH_PTX 3.0
for opencv

CUDA_ARCH_BIN 3.0 3.5 5.0 5.2 6.0 6.1 relate with
-gencode;arch=compute_30,code=sm_30;-gencode;arch=compute_35,code=sm_35;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_52,code=sm_52;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;
CUDA_ARCH_PTX 3.0 relate with
-gencode;arch=compute_30,code=compute_30;
for caffe

the
CUDA_ARCH_BINparameter specifies multiple architectures so as to support a variety of GPU boards. otherwise, cuda programs will not run with other type of GPU boards.
为了支持在多个不同计算能力的GPU上运行可执行程序,opencv/caffe编译过程中需要支持多个不同架构,eg. CUDA_ARCH_BIN 3.0 3.5 5.0 5.2 6.0 6.1, 因此编译过程非常耗时。在编译的而过程中尽可能选择需要发布release版本的GPU架构进行配置编译。
configure and output:
Selecting Windows SDK version 10.0.14393.0 to target Windows 10.0.17134.
found IPP (ICV version): 9.0.1 [9.0.1]
at: C:/compile/opencv/3rdparty/ippicv/unpack/ippicv_win
CUDA detected: 8.0
CUDA NVCC target flags: -gencode;arch=compute_30,code=sm_30;-gencode;arch=compute_30,code=compute_30
Could NOT find Doxygen (missing: DOXYGEN_EXECUTABLE)
To enable PlantUML support, set PLANTUML_JAR environment variable or pass -DPLANTUML_JAR=<filepath> option to cmake
Could NOT find PythonInterp: Found unsuitable version "1.4", but required is at least "3.4" (found C:/Users/zunli/.babun/cygwin/bin/python)
Could NOT find PythonInterp: Found unsuitable version "1.4", but required is at least "3.2" (found C:/Users/zunli/.babun/cygwin/bin/python)
Could NOT find Matlab (missing: MATLAB_MEX_SCRIPT MATLAB_INCLUDE_DIRS MATLAB_ROOT_DIR MATLAB_LIBRARIES MATLAB_LIBRARY_DIRS MATLAB_MEXEXT MATLAB_ARCH MATLAB_BIN)
General configuration for OpenCV 3.1.0 =====================================
Version control: 3.1.0-3-g5e9beb8
Platform:
Host: Windows 10.0.17134 AMD64
CMake: 3.10.0
CMake generator: Visual Studio 14 2015 Win64
CMake build tool: C:/Program Files (x86)/MSBuild/14.0/bin/MSBuild.exe
MSVC: 1900
C/C++:
Built as dynamic libs?: YES
C++ Compiler: C:/Program Files (x86)/Microsoft Visual Studio 14.0/VC/bin/x86_amd64/cl.exe (ver 19.0.24215.1)
C++ flags (Release): /DWIN32 /D_WINDOWS /W4 /GR /EHa /D _CRT_SECURE_NO_DEPRECATE /D _CRT_NONSTDC_NO_DEPRECATE /D _SCL_SECURE_NO_WARNINGS /Gy /bigobj /Oi /wd4251 /wd4324 /wd4275 /wd4589 /MP8 /MD /O2 /Ob2 /DNDEBUG /MP /Zi
C++ flags (Debug): /DWIN32 /D_WINDOWS /W4 /GR /EHa /D _CRT_SECURE_NO_DEPRECATE /D _CRT_NONSTDC_NO_DEPRECATE /D _SCL_SECURE_NO_WARNINGS /Gy /bigobj /Oi /wd4251 /wd4324 /wd4275 /wd4589 /MP8 /MDd /Zi /Ob0 /Od /RTC1
C Compiler: C:/Program Files (x86)/Microsoft Visual Studio 14.0/VC/bin/x86_amd64/cl.exe
C flags (Release): /DWIN32 /D_WINDOWS /W3 /D _CRT_SECURE_NO_DEPRECATE /D _CRT_NONSTDC_NO_DEPRECATE /D _SCL_SECURE_NO_WARNINGS /Gy /bigobj /Oi /MP8 /MD /O2 /Ob2 /DNDEBUG /Zi
C flags (Debug): /DWIN32 /D_WINDOWS /W3 /D _CRT_SECURE_NO_DEPRECATE /D _CRT_NONSTDC_NO_DEPRECATE /D _SCL_SECURE_NO_WARNINGS /Gy /bigobj /Oi /MP8 /MDd /Zi /Ob0 /Od /RTC1
Linker flags (Release): /machine:x64 /INCREMENTAL:NO /debug
Linker flags (Debug): /machine:x64 /debug /INCREMENTAL
Precompiled headers: YES
Extra dependencies: comctl32 gdi32 ole32 setupapi ws2_32 vfw32 cudart nppc nppi npps cufft -LC:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0/lib/x64
3rdparty dependencies: zlib libjpeg libwebp libpng libtiff libjasper IlmImf
OpenCV modules:
To be built: cudev core cudaarithm flann imgproc ml video cudabgsegm cudafilters cudaimgproc cudawarping imgcodecs photo shape videoio cudacodec highgui objdetect ts features2d calib3d cudafeatures2d cudalegacy cudaobjdetect cudaoptflow cudastereo stitching superres videostab python2
Disabled: world
Disabled by dependency: -
Unavailable: java python3 viz
Windows RT support: NO
GUI:
QT: NO
Win32 UI: YES
OpenGL support: NO
VTK support: NO
Media I/O:
ZLib: build (ver 1.2.8)
JPEG: build (ver 90)
WEBP: build (ver 0.3.1)
PNG: build (ver 1.6.19)
TIFF: build (ver 42 - 4.0.2)
JPEG 2000: build (ver 1.900.1)
OpenEXR: build (ver 1.7.1)
GDAL: NO
Video I/O:
Video for Windows: YES
DC1394 1.x: NO
DC1394 2.x: NO
FFMPEG: YES (prebuilt binaries)
codec: YES (ver 56.41.100)
format: YES (ver 56.36.101)
util: YES (ver 54.27.100)
swscale: YES (ver 3.1.101)
resample: NO
gentoo-style: YES
GStreamer: NO
OpenNI: NO
OpenNI PrimeSensor Modules: NO
OpenNI2: NO
PvAPI: NO
GigEVisionSDK: NO
DirectShow: YES
Media Foundation: NO
XIMEA: NO
Intel PerC: NO
Parallel framework: Concurrency
Other third-party libraries:
Use IPP: 9.0.1 [9.0.1]
at: C:/compile/opencv/3rdparty/ippicv/unpack/ippicv_win
Use IPP Async: NO
Use Eigen: NO
Use Cuda: YES (ver 8.0)
Use OpenCL: YES
Use custom HAL: NO
NVIDIA CUDA
Use CUFFT: YES
Use CUBLAS: NO
USE NVCUVID: NO
NVIDIA GPU arch: 30 35 50 52 60 61
NVIDIA PTX archs: 30
Use fast math: NO
OpenCL:
Version: dynamic
Include path: C:/compile/opencv/3rdparty/include/opencl/1.2
Use AMDFFT: NO
Use AMDBLAS: NO
Python 2:
Interpreter: C:/Python27/python.exe (ver 2.7.13)
Libraries: C:/Python27/libs/python27.lib (ver 2.7.13)
numpy: C:/Python27/lib/site-packages/numpy/core/include (ver 1.11.3)
packages path: C:/Python27/Lib/site-packages
Python 3:
Interpreter: NO
Python (for build): C:/Python27/python.exe
Java:
ant: NO
JNI: C:/Program Files/Java/jdk1.8.0_161/include C:/Program Files/Java/jdk1.8.0_161/include/win32 C:/Program Files/Java/jdk1.8.0_161/include
Java wrappers: NO
Java tests: NO
Matlab: Matlab not found or implicitly disabled
Documentation:
Doxygen: NO
PlantUML: NO
Tests and samples:
Tests: YES
Performance tests: NO
C/C++ Examples: NO
Install path: C:/compile/opencv/build/install
cvconfig.h is in: C:/compile/opencv/build
-----------------------------------------------------------------
Configuring done
Generating done
Notice for gencode
CUDA NVCC target flags: -gencode;arch=compute_30,code=sm_30;-gencode;arch=compute_35,code=sm_35;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_52,code=sm_52;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_30,code=compute_30
build
Open OpenCV.sln with VS 2015 and build release version.
this may take hours to finish.

errors

possible solutions
With
BUILD_PERF_TESTSandBUILD_TESTSdisabled, I managed to build OpenCV 3.1 with CUDA 8.0 on Windows 10 with VS2015 x64 arch target. Without building test/performance modules, the build process costs less time as well : )
I actually got it to work both on my laptop and my desktop (GTX960M and GTX970 respectively) running with OpenCV 3.2 and the latest version of CUDA 8.0 for Win10 in Visual Studio 15 Community! What I did was to enable
WITH_CUBLASaswell asWITH_CUDA. I also turned offBUILD_PERF_TESTSandBUILD_TESTS. The configuration was built using the Visual Studio 14 2015 C++ compiler.
my solution:
disable `BUILD_PERF_TESTS`

configure and build again. this time cost only about 1 minutes.
after error fixed,build results

demo
cuda-module
OpenCV GPU module is written using CUDA, therefore it benefits from the CUDA ecosystem.
GPU modules includes class cv::cuda::GpuMat which is a primary container for data kept in GPU memory. It’s interface is very similar with cv::Mat, its CPU counterpart. All GPU functions receive GpuMat as input and output arguments. This allows to invoke several GPU algorithms without downloading data. GPU module API interface is also kept similar with CPU interface where possible. So developers who are familiar with Opencv on CPU could start using GPU straightaway.
The GPU module is designed as a host-level API. This means that if you have pre-compiled OpenCV GPU binaries, you are not required to have the CUDA Toolkit installed or write any extra code to make use of the GPU.
CMakeLists.txt
find_package(OpenCV REQUIRED COMPONENTS core highgui imgproc features2d calib3d
cudaarithm cudabgsegm cudafilters cudaimgproc cudawarping cudafeatures2d # for cuda-enabled
) #
MESSAGE( [Main] " OpenCV_INCLUDE_DIRS = ${OpenCV_INCLUDE_DIRS}")
MESSAGE( [Main] " OpenCV_LIBS = ${OpenCV_LIBS}")
demo.cpp
In the sample below an image is loaded from local file, next it is uploaded to GPU, thresholded, downloaded and displayed.
#include <opencv2/cudaarithm.hpp>
#include <opencv2/cudabgsegm.hpp>
#include <opencv2/cudafilters.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/cudawarping.hpp>
#include <opencv2/cudafeatures2d.hpp>
int test_opencv_gpu()
{
try
{
cv::Mat src_host = cv::imread("file.png", CV_LOAD_IMAGE_GRAYSCALE);
cv::cuda::GpuMat dst, src;
src.upload(src_host);
cv::cuda::threshold(src, dst, 128.0, 255.0, CV_THRESH_BINARY);
cv::Mat result_host;
dst.download(result_host);
cv::imshow("Result", result_host);
cv::waitKey();
}
catch (const cv::Exception& ex)
{
std::cout << "Error: " << ex.what() << std::endl;
}
return 0;
}
cpu vs gpu time cost
- (1)对于分辨率不特别大的图片间的ORB特征匹配,CPU运算得比GPU版的快(由于图像上传到GPU消耗了时间)
- (2)但对于分辨率较大的图片,或者GPU比CPU好的机器(比如Nvidia Jetson系列),GPU版的ORB算法比CPU版的程序更高效。
problems
(1) 使用cuda版本的opencv caffe网络的第一次创建非常耗时,后面的网络创建则非常快。
(2) opencv的gpu代码比cpu代码慢,初次启动多耗费20s左右。(事实是由于编译的caffe和GPU计算力不匹配导致的)
reasons
Your problem is that CUDA needs to initialize! And it will generally takes between serveral seconds
Why first function call is slow?
That is because of initialization overheads. On first GPU function callCuda Runtime APIis initialized implicitly.
The first gpu function call is always takes more time, because CUDA initialize context for device.
The following calls will be faster.
Not Reasons:
(1) CPU clockspeed is 10x faster than GPU clockspeed.
(2) memory transfer times between host (CPU) and device (GPU) (upload,downloa data)
deploy
runtime errors
gtx 1060 编译的opencv caffe在gtx 970m上运行出现错误
im2col.cu Check failed: error == cudaSuccess (8 vs. 0) invalid device function
gtx 1060 sm_61
gtx 970m sm_52
im2col 是caffe的源文件,表明gtx 970m的计算能力不支持可执行文件的运行。
reasons
see what-is-the-purpose-of-using-multiple-arch-flags-in-nvidias-nvcc-compiler
Roughly speaking, the code compilation flow goes like this:
CUDA C/C++ device code source --> PTX --> SASS
The virtual architecture (e.g.
compute_20, whatever is specified by-arch compute...) determines what type of PTX code will be generated. The additional switches (e.g.-code sm_21) determine what type of SASS code will be generated. SASS is actually executable object code for a GPU (machine language). An executable can contain multiple versions of SASS and/or PTX, and there is a runtime loader mechanism that will pick appropriate versions based on the GPU actually being used.
win7/win10 deploy
- compile opencv caffe on windows 10 for GTX 1060
- deoply on windows 7 for GTX 1080 Ti successfully
for win7, if we install 398.82-desktop-win8-win7-64bit-international-whql.exe,errors may occur:
> nvidia-smi.exe
Failed to initialize NVML: Unknown error
Solutions: use older drivers 385.69
linux/window performance
(1) api在linux平均耗时3ms;同样的代码在windows平均耗时14ms
(2) vs编译开启代码优化前后性能相差接近5倍,125ms vs 25ms
(3) cmake编译RELEASE选项默认已经开启了代码优化 -O3
Reference
- Building OpenCV for Tegra with CUDA
- opencv with cuda introduction
- ref doc for opencv gpu
- opencv 3.1.0 doc
- std::tuple errors when Building OpenCV (Main Branch) for Microsoft VS 2015 (x64)
- opencv github issues
- building-opencv-3-cuda-errors
- why-opencv-gpu-code-is-slower-than-cpu
- huge-time-to-upload-data-to-gpu
- https://github.com/floydhub/dl-docker/issues/12
- Cuda kernel failed. Error: invalid device function
- offical cuda-c-programming-guide
- what-is-the-purpose-of-using-multiple-arch-flags-in-nvidias-nvcc-compiler
History
- 20180713: created.
Copyright
- Post author: kezunlin
- Post link: https://kezunlin.me/post/6580691f/
- Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 3.0 unless stating additionally.
windows 10 上源码编译OpenCV并支持CUDA | compile opencv with CUDA support on windows 10的更多相关文章
- windows 10上源码编译libjpeg-turbo和使用教程 | compile and use libjpeg-turbo on windows 10
本文首发于个人博客https://kezunlin.me/post/83828674/,欢迎阅读! compile and use libjpeg-turbo on windows 10 Series ...
- windows 10 上源码编译boost 1.66.0 | compile boost 1.66.0 from source on windows 10
本文首发于个人博客https://kezunlin.me/post/854071ac/,欢迎阅读! compile boost 1.66.0 from source on windows 10 Ser ...
- [Part 4] 在Windows 10上源码编译PCL 1.8.1支持VTK和QT,可视化三维点云
本文首发于个人博客https://kezunlin.me/post/2d809f92/,欢迎阅读! Part-4: Compile pcl with vtk qt5 support from sour ...
- windows 10上源码编译dlib教程 | compile dlib on windows 10
本文首发于个人博客https://kezunlin.me/post/654a6d04/,欢迎阅读! compile dlib on windows 10 Series Part 1: compile ...
- windows 10 上源码编译opengv | compile opengv on windows 10 from source
本文首发于个人博客https://kezunlin.me/post/51cd9fa0/,欢迎阅读! compile opengv on windows 10 from source Series co ...
- Windows 10上源码编译glog和gflags 编写glog-config.cmake和gflags-config.cmake | compile glog and glags on windows from source
本文首发于个人博客https://kezunlin.me/post/bb64e398/,欢迎阅读! compile glog v0.3.5 and glags on windows from sour ...
- Windows 10上源码编译Poco并编写httpserver和tcpserver | compile and install poco cpp library on windows
本文首发于个人博客https://kezunlin.me/post/9587bb47/,欢迎阅读! compile and install poco cpp library on windows Se ...
- [Windows篇] 在windows 10上源码编译gtest 并编写CMakeLists.txt
本文首发于个人博客https://kezunlin.me/post/aca50ff8/,欢迎阅读! compile gtest on windows 10 Guide compile gtest on ...
- ubuntu 16.04上源码编译libjpeg-turbo和使用教程 | compile and use libjpeg-turbo on ubuntu 16.04
本文首发于个人博客https://kezunlin.me/post/9f626e7a/,欢迎阅读! compile and use libjpeg-turbo on ubuntu 16.04 Seri ...
随机推荐
- WSL捣鼓记——图形化(以emacs为例)
前言 这学期开始学习linux,但笔记本装了双系统之后指纹识别会失效,开虚拟机又十分占据内存,于是乎基本需要使用linux的时候就用wsl,可奈何只有命令行界面,在需要使用图形软件(如emacs)的时 ...
- typescript 入门教程一
##### 从今天开始,持续更新typescript入门教程系列.... 目前ts越来越火,主流的前端框架,好比*angular,vue 3*均是采用ts来编写,所有很多公司的项目都是用**ts**来 ...
- BrickerBot
BrickerBot 概况 <大华(Dahua)安防监控设备弱口令问题报告 >主要提到是Telnet弱口令 root/vizxv 相关链接:(发布时间:2015年4月1日) 通过Telne ...
- Java日志Log4j或者Logback的NDC和MDC功能
NDC和MDC的区别 Java中使用的日志的实现框架有很多种,常用的log4j和logback以及java.util.logging,而log4j是apache实现的一个开源日志组件(Wrapped ...
- PHP JSON乱码简洁的解决办法
PHP JSON乱码简洁的解决办法 $arr = array('ret'=>400, 'msg'=>'服务器地址不允许', 'data'=>''); foreach ( $arr a ...
- Kafka、Redis和其它消息组件比较
Kafka作为时下最流行的开源消息系统,被广泛地应用在数据缓冲.异步通信.汇集日志.系统解耦等方面.相比较于RocketMQ等其他常见消息系统,Kafka在保障了大部分功能特性的同时,还提供了超一流的 ...
- Process类调用exe,返回值以及参数空格问题
(方法一)返回值为int fileName为调用的exe路径,入口参数为para,其中多个参数用空格分开,当D:/DD.exe返回值为int类型时. Process p = new Process() ...
- Flink 从 0 到 1 学习 —— Flink Data transformation(转换)
toc: true title: Flink 从 0 到 1 学习 -- Flink Data transformation(转换) date: 2018-11-04 tags: Flink 大数据 ...
- 身份证号码验证算法(php和js实现)
原文:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=21126994&id=3938244 http://www.jb ...
- js如何展示上传的图片
前言:本文章主要讲的是上传的图片如何展示在页面上. 一般来说,我们会先将本地图片上传到服务器,上传成功后,由后台返回图片的网络地址再在前端显示.但是,我今天讲的是不通过前面说的过程,而是直接使用js将 ...